Visualizing polymer diffusion in hydrogel self-healing

Mengfan Hai , Qian Zhang , Zengzhao Li , Mengjiao Cheng , Alexander J.C. Kuehne , Feng Shi
{"title":"Visualizing polymer diffusion in hydrogel self-healing","authors":"Mengfan Hai ,&nbsp;Qian Zhang ,&nbsp;Zengzhao Li ,&nbsp;Mengjiao Cheng ,&nbsp;Alexander J.C. Kuehne ,&nbsp;Feng Shi","doi":"10.1016/j.supmat.2022.100009","DOIUrl":null,"url":null,"abstract":"<div><p>Self-healing hydrogels are attractive to extend material lifetime by rapid recovery from damage; the underlying healing mechanism regarding polymer diffusion are of broad research interest. However, intuitive and convenient characterization of polymer diffusion remains challenging due to the complex and dynamic features of hydrogels. Herein, we have constructed a dually-crosslinked hydrogel system to decouple complex factors for direct visualization of polymer diffusion and quantified study of healing dynamics. The successively formed dually-crosslinked hydrogel networks are designated for purposes of self-healing/visualization and tunable constraining effects (varied crosslinking density), respectively. As a result, we observed direct polymer diffusion across the crack interface and calculated the diffusion speed ranging from 0.51 to 0.04 μm/s depending on varied constraining degree. The corresponding self-healing performance is consistent with other conventional characterizations (e.g., dynamic mechanical properties, surface morphology changes). The above method has enabled facile visualization of dynamic healing processes with flexible adjustment of polymeric systems, which could inspire novel designs of high-performance self-healing materials.</p></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"1 ","pages":"Article 100009"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667240522000034/pdfft?md5=179aa73f04d696115bc0948da3b1cf2d&pid=1-s2.0-S2667240522000034-main.pdf","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667240522000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Self-healing hydrogels are attractive to extend material lifetime by rapid recovery from damage; the underlying healing mechanism regarding polymer diffusion are of broad research interest. However, intuitive and convenient characterization of polymer diffusion remains challenging due to the complex and dynamic features of hydrogels. Herein, we have constructed a dually-crosslinked hydrogel system to decouple complex factors for direct visualization of polymer diffusion and quantified study of healing dynamics. The successively formed dually-crosslinked hydrogel networks are designated for purposes of self-healing/visualization and tunable constraining effects (varied crosslinking density), respectively. As a result, we observed direct polymer diffusion across the crack interface and calculated the diffusion speed ranging from 0.51 to 0.04 μm/s depending on varied constraining degree. The corresponding self-healing performance is consistent with other conventional characterizations (e.g., dynamic mechanical properties, surface morphology changes). The above method has enabled facile visualization of dynamic healing processes with flexible adjustment of polymeric systems, which could inspire novel designs of high-performance self-healing materials.

Abstract Image

可视化聚合物在水凝胶自愈中的扩散
自愈性水凝胶因其损伤后的快速恢复而延长了材料的使用寿命;聚合物扩散的潜在愈合机制引起了广泛的研究兴趣。然而,由于水凝胶的复杂和动态特性,直观和方便地表征聚合物的扩散仍然具有挑战性。在此,我们构建了一个双交联的水凝胶体系来解耦复杂因素,以直接可视化聚合物扩散和定量研究愈合动力学。先后形成的双交联水凝胶网络分别用于自我修复/可视化和可调节的约束效果(不同的交联密度)。结果表明,聚合物在裂纹界面上的直接扩散速率随约束程度的变化而变化,范围为0.51 ~ 0.04 μm/s。相应的自愈性能与其他常规表征(例如,动态力学性能,表面形貌变化)一致。上述方法使动态愈合过程的可视化和聚合物系统的灵活调整成为可能,这可能激发高性能自愈合材料的新设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信