Construction of the nodal conductance matrix of a planar resistive grid and derivation of the analytical expressions of its eigenvalues and eigenvectors using the Kronecker product and sum

V. Tavsanoglu
{"title":"Construction of the nodal conductance matrix of a planar resistive grid and derivation of the analytical expressions of its eigenvalues and eigenvectors using the Kronecker product and sum","authors":"V. Tavsanoglu","doi":"10.1109/ISCAS.2016.7527191","DOIUrl":null,"url":null,"abstract":"This paper considers the task of constructing an (M×A+1)-node rectangular planar resistive grid as: first forming two (M×A+1)-node planar sub-grids; one made up of M of (N+1)-node horizontal, and the other of N of (M+1)-node vertical linear resistive grids, then joining their corresponding nodes. By doing so it is sho wn that the nodal conductance matrices GH and GV of the two sub-grids can be expressed as the Kronecker products GH = Im ⊗ Gn, Gv = Gm ⊗ In, and G of the resultant planar grid as the Kronecker sum G = Gn ⊕ Gm, where Gm and Im are, respectively, the nodal conductance matrix of a linear resistive grid and the identity matrix, both of size M. Moreover, since the analytical expression s for the eigenvalues and eigenvectors of Gm — which is a symmetric tridiagonal matrix — are well known, this approach enables the derivation of the analytical expressions of the eigenvalues and eigenvectors of Gh, Gv and G in terms of those of Gm and Gn, thereby drastically simplifying their computation and rendering the use of any matrix-inversion-based method unnecessary in the solution of nodal equations of very large grids.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"6 1","pages":"145-148"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7527191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the task of constructing an (M×A+1)-node rectangular planar resistive grid as: first forming two (M×A+1)-node planar sub-grids; one made up of M of (N+1)-node horizontal, and the other of N of (M+1)-node vertical linear resistive grids, then joining their corresponding nodes. By doing so it is sho wn that the nodal conductance matrices GH and GV of the two sub-grids can be expressed as the Kronecker products GH = Im ⊗ Gn, Gv = Gm ⊗ In, and G of the resultant planar grid as the Kronecker sum G = Gn ⊕ Gm, where Gm and Im are, respectively, the nodal conductance matrix of a linear resistive grid and the identity matrix, both of size M. Moreover, since the analytical expression s for the eigenvalues and eigenvectors of Gm — which is a symmetric tridiagonal matrix — are well known, this approach enables the derivation of the analytical expressions of the eigenvalues and eigenvectors of Gh, Gv and G in terms of those of Gm and Gn, thereby drastically simplifying their computation and rendering the use of any matrix-inversion-based method unnecessary in the solution of nodal equations of very large grids.
构造了平面电阻网格的节点电导矩阵,并利用Kronecker积和导出了其特征值和特征向量的解析表达式
本文认为构造(M×A+1)节点的平面矩形电阻网格的任务是:首先形成两个(M×A+1)节点的平面子网格;一个由M个(N+1)个水平节点组成,另一个由N个(M+1)个垂直节点组成,然后连接它们对应的节点。这样商店wn,节点电导矩阵GH和全球之声的两个sub-grids可以表示为克罗内克产品GH = Im⊗Gn,问=通用⊗,和G合成平面网格的克罗内克和G = Gn⊕通用汽车、通用汽车和我在哪里,分别线性电阻网格的节点电导矩阵和单位矩阵,这两个尺寸m .此外,解析表达式年代以来的特征值和特征向量,通用汽车——这是一个对称三对角矩阵众所周知,这种方法可以用Gm和Gn的特征值和特征向量推导出Gh、Gv和G的特征值和特征向量的解析表达式,从而大大简化了它们的计算,并且在求解超大网格的节点方程时不需要使用任何基于矩阵反演的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信