Design Space Exploration for PCA Implementation of Embedded Learning in FPGAs

Rodrigo Marino, J. M. Lanza-Gutiérrez, T. Riesgo, M. Holgado
{"title":"Design Space Exploration for PCA Implementation of Embedded Learning in FPGAs","authors":"Rodrigo Marino, J. M. Lanza-Gutiérrez, T. Riesgo, M. Holgado","doi":"10.1109/ISCAS.2018.8351540","DOIUrl":null,"url":null,"abstract":"Nowadays, the growth of Industry 4.0 and Internet of Things (IoT) demands new solutions for designing low-power low-cost advanced computational algorithms. This work develops the sensor signal processing layer of a chemical biosensing IoT edge device using NanoPillar transducers. We propose to move from smart sensors to expert sensors, applying Principal Component Analysis (PCA) for dimensionality reduction in FPGAs. As a result, this paper provides a design space exploration of PCA implementation over FPGAs, studying parameters as throughput and resource usage.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"246 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, the growth of Industry 4.0 and Internet of Things (IoT) demands new solutions for designing low-power low-cost advanced computational algorithms. This work develops the sensor signal processing layer of a chemical biosensing IoT edge device using NanoPillar transducers. We propose to move from smart sensors to expert sensors, applying Principal Component Analysis (PCA) for dimensionality reduction in FPGAs. As a result, this paper provides a design space exploration of PCA implementation over FPGAs, studying parameters as throughput and resource usage.
fpga中嵌入式学习PCA实现的设计空间探索
如今,工业4.0和物联网(IoT)的发展需要新的解决方案来设计低功耗、低成本的先进计算算法。本工作开发了使用纳米柱传感器的化学生物传感物联网边缘设备的传感器信号处理层。我们建议从智能传感器转向专家传感器,应用主成分分析(PCA)在fpga中进行降维。因此,本文提供了在fpga上实现PCA的设计空间探索,研究了吞吐量和资源使用等参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信