A survey on artificial intelligence in histopathology image analysis

IF 6.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
M. Abdelsamea, Usama Zidan, Zakaria Senousy, M. Gaber, E. Rakha, Mohammad Ilyas
{"title":"A survey on artificial intelligence in histopathology image analysis","authors":"M. Abdelsamea, Usama Zidan, Zakaria Senousy, M. Gaber, E. Rakha, Mohammad Ilyas","doi":"10.1002/widm.1474","DOIUrl":null,"url":null,"abstract":"The increasing adoption of the whole slide image (WSI) technology in histopathology has dramatically transformed pathologists' workflow and allowed the use of computer systems in histopathology analysis. Extensive research in Artificial Intelligence (AI) with a huge progress has been conducted resulting in efficient, effective, and robust algorithms for several applications including cancer diagnosis, prognosis, and treatment. These algorithms offer highly accurate predictions but lack transparency, understandability, and actionability. Thus, explainable artificial intelligence (XAI) techniques are needed not only to understand the mechanism behind the decisions made by AI methods and increase user trust but also to broaden the use of AI algorithms in the clinical setting. From the survey of over 150 papers, we explore different AI algorithms that have been applied and contributed to the histopathology image analysis workflow. We first address the workflow of the histopathological process. We present an overview of various learning‐based, XAI, and actionable techniques relevant to deep learning methods in histopathological imaging. We also address the evaluation of XAI methods and the need to ensure their reliability on the field.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"35 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1474","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 12

Abstract

The increasing adoption of the whole slide image (WSI) technology in histopathology has dramatically transformed pathologists' workflow and allowed the use of computer systems in histopathology analysis. Extensive research in Artificial Intelligence (AI) with a huge progress has been conducted resulting in efficient, effective, and robust algorithms for several applications including cancer diagnosis, prognosis, and treatment. These algorithms offer highly accurate predictions but lack transparency, understandability, and actionability. Thus, explainable artificial intelligence (XAI) techniques are needed not only to understand the mechanism behind the decisions made by AI methods and increase user trust but also to broaden the use of AI algorithms in the clinical setting. From the survey of over 150 papers, we explore different AI algorithms that have been applied and contributed to the histopathology image analysis workflow. We first address the workflow of the histopathological process. We present an overview of various learning‐based, XAI, and actionable techniques relevant to deep learning methods in histopathological imaging. We also address the evaluation of XAI methods and the need to ensure their reliability on the field.

Abstract Image

人工智能在组织病理图像分析中的研究进展
在组织病理学中越来越多地采用全幻灯片图像(WSI)技术,极大地改变了病理学家的工作流程,并允许在组织病理学分析中使用计算机系统。人工智能(AI)的广泛研究取得了巨大进展,为癌症诊断、预后和治疗等多种应用提供了高效、有效和稳健的算法。这些算法提供了高度准确的预测,但缺乏透明度、可理解性和可操作性。因此,可解释的人工智能(XAI)技术不仅需要理解人工智能方法做出决策背后的机制并增加用户信任,而且还需要扩大人工智能算法在临床环境中的使用。从对150多篇论文的调查中,我们探索了已经应用并有助于组织病理学图像分析工作流程的不同人工智能算法。我们首先讨论组织病理学过程的工作流程。我们概述了各种基于学习的、XAI的和与组织病理学成像中深度学习方法相关的可操作技术。我们还讨论了XAI方法的评估以及确保其在现场可靠性的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
22.70
自引率
2.60%
发文量
39
审稿时长
>12 weeks
期刊介绍: The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信