{"title":"Use of Fos as an Index of Altered Neuronal Activation in Aging Animals","authors":"J. Lloyd","doi":"10.1006/NCMN.1994.1024","DOIUrl":null,"url":null,"abstract":"Abstract The immediate early gene c- fos is rapidly and transiently induced in response to a variety of extracellular stimuli and codes for a protein, Fos, that regulates transcription of target genes in neurons. Detection of Fos can serve as a marker of neuronal activation at the individual cell level. Thus, localization of Fos provides investigators with a widely applicable tool for assessment of neuronal activation during age-related changes in brain function. This article describes a method for the immunocytochemical localization of Fos in neurons of the aging brain using free-floating sections and the avidin-biotin detection system. This technique is particularly useful when Fos expression is cobcalized with other neuropeptides, permitting the assessment of age-related changes in discrete neuronal populations. Application of this method to studies of age-associated changes in hypothalamic neurons involved in reproductive cyclicity is described.","PeriodicalId":100951,"journal":{"name":"Neuroprotocols","volume":"7 1","pages":"182-187"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroprotocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/NCMN.1994.1024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The immediate early gene c- fos is rapidly and transiently induced in response to a variety of extracellular stimuli and codes for a protein, Fos, that regulates transcription of target genes in neurons. Detection of Fos can serve as a marker of neuronal activation at the individual cell level. Thus, localization of Fos provides investigators with a widely applicable tool for assessment of neuronal activation during age-related changes in brain function. This article describes a method for the immunocytochemical localization of Fos in neurons of the aging brain using free-floating sections and the avidin-biotin detection system. This technique is particularly useful when Fos expression is cobcalized with other neuropeptides, permitting the assessment of age-related changes in discrete neuronal populations. Application of this method to studies of age-associated changes in hypothalamic neurons involved in reproductive cyclicity is described.