The lexicographically least square-free word with a given prefix

IF 0.7 4区 数学 Q2 MATHEMATICS
Siddharth Berera, Andr'es G'omez-Colunga, Joey Lakerdas-Gayle, John L'opez, Mauditra Matin, Daniel Roebuck, E. Rowland, Noam Scully, Juliet Whidden
{"title":"The lexicographically least square-free word with a given prefix","authors":"Siddharth Berera, Andr'es G'omez-Colunga, Joey Lakerdas-Gayle, John L'opez, Mauditra Matin, Daniel Roebuck, E. Rowland, Noam Scully, Juliet Whidden","doi":"10.48550/arXiv.2210.00508","DOIUrl":null,"url":null,"abstract":"The lexicographically least square-free infinite word on the alphabet of non-negative integers with a given prefix $p$ is denoted $L(p)$. When $p$ is the empty word, this word was shown by Guay-Paquet and Shallit to be the ruler sequence. For other prefixes, the structure is significantly more complicated. In this paper, we show that $L(p)$ reflects the structure of the ruler sequence for several words $p$. We provide morphisms that generate $L(n)$ for letters $n=1$ and $n\\geq3$, and $L(p)$ for most families of two-letter words $p$.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"87 8 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.00508","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The lexicographically least square-free infinite word on the alphabet of non-negative integers with a given prefix $p$ is denoted $L(p)$. When $p$ is the empty word, this word was shown by Guay-Paquet and Shallit to be the ruler sequence. For other prefixes, the structure is significantly more complicated. In this paper, we show that $L(p)$ reflects the structure of the ruler sequence for several words $p$. We provide morphisms that generate $L(n)$ for letters $n=1$ and $n\geq3$, and $L(p)$ for most families of two-letter words $p$.
具有给定前缀的字典学上无最小二乘的单词
具有给定前缀$p$的非负整数字母表上的字典学上的最小二乘自由无限字记为$L(p)$。当$p$是空词时,这个词被Guay-Paquet和Shallit显示为标尺序列。对于其他前缀,结构要复杂得多。在本文中,我们证明$L(p)$反映了几个单词$p$的标尺序列的结构。我们提供的词态可以为字母$n=1$和$n\geq3$生成$L(n)$,为大多数双字母单词$p$族生成$L(p)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信