Prediction of player position for talent identification in association netball: a regression-based approach

Nur Hazwani Jasni, Aida Mustapha, Siti Solehah Tenah, S. Mostafa, Nazim Razali
{"title":"Prediction of player position for talent identification in association netball: a regression-based approach","authors":"Nur Hazwani Jasni, Aida Mustapha, Siti Solehah Tenah, S. Mostafa, Nazim Razali","doi":"10.26555/ijain.v8i1.707","DOIUrl":null,"url":null,"abstract":"Among the challenges in industrial revolutions, 4.0 is managing organizations’ talents, especially to ensure the right person for the position can be selected. This study is set to introduce a predictive approach for talent identification in the sport of netball using individual player qualities in terms of physical fitness, mental capacity, and technical skills. A data mining approach is proposed using three data mining algorithms, which are Decision Tree (DT), Neural Network (NN), and Linear Regressions (LR). All the models are then compared based on the Relative Absolute Error (RAE), Mean Absolute Error (MAE), Relative Square Error (RSE), Root Mean Square Error (RMSE), Coefficient of Determination (R2), and Relative Square Error (RSE). The findings are presented and discussed in light of early talent spotting and selection. Generally, LR has the best performance in terms of MAE and RMSE as it has the lowest values among the three models.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"175 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/ijain.v8i1.707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Among the challenges in industrial revolutions, 4.0 is managing organizations’ talents, especially to ensure the right person for the position can be selected. This study is set to introduce a predictive approach for talent identification in the sport of netball using individual player qualities in terms of physical fitness, mental capacity, and technical skills. A data mining approach is proposed using three data mining algorithms, which are Decision Tree (DT), Neural Network (NN), and Linear Regressions (LR). All the models are then compared based on the Relative Absolute Error (RAE), Mean Absolute Error (MAE), Relative Square Error (RSE), Root Mean Square Error (RMSE), Coefficient of Determination (R2), and Relative Square Error (RSE). The findings are presented and discussed in light of early talent spotting and selection. Generally, LR has the best performance in terms of MAE and RMSE as it has the lowest values among the three models.
篮球界球员位置对人才识别的预测:基于回归的方法
在工业革命的挑战中,4.0是管理组织的人才,特别是确保能够选择合适的人选。本研究旨在引入一种预测方法,利用个人球员的身体素质、心理能力和技术技能来识别无板篮球运动的人才。提出了一种基于决策树(DT)、神经网络(NN)和线性回归(LR)三种数据挖掘算法的数据挖掘方法。然后根据相对绝对误差(RAE)、平均绝对误差(MAE)、相对平方误差(RSE)、均方根误差(RMSE)、决定系数(R2)和相对平方误差(RSE)对所有模型进行比较。这些发现是在早期人才发现和选择的基础上提出和讨论的。一般来说,LR在MAE和RMSE方面表现最好,因为它在三个模型中具有最低的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Advances in Intelligent Informatics
International Journal of Advances in Intelligent Informatics Computer Science-Computer Vision and Pattern Recognition
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信