Feature Selection for Anomaly Detection in Call Center Data

Leonardo O. Iheme, Ş. Ozan
{"title":"Feature Selection for Anomaly Detection in Call Center Data","authors":"Leonardo O. Iheme, Ş. Ozan","doi":"10.23919/ELECO47770.2019.8990454","DOIUrl":null,"url":null,"abstract":"In this study, we present the process of designing machine learning models for the detection of call center agent malpractices. Based on the features extracted from audio recordings of a given telephone conversation, appropriate one-class support vector machine, isolation forest, and multivariate Gaussian models are trained, evaluated and compared in order to determine the best use case. The labeled data used in the experiments was obtained from a real call center and the results obtained indicate that the system is usable in a real-world scenario. The accuracy of used machine learning models are validated by using the F1 score as a metric.","PeriodicalId":6611,"journal":{"name":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"1 1","pages":"926-929"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELECO47770.2019.8990454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we present the process of designing machine learning models for the detection of call center agent malpractices. Based on the features extracted from audio recordings of a given telephone conversation, appropriate one-class support vector machine, isolation forest, and multivariate Gaussian models are trained, evaluated and compared in order to determine the best use case. The labeled data used in the experiments was obtained from a real call center and the results obtained indicate that the system is usable in a real-world scenario. The accuracy of used machine learning models are validated by using the F1 score as a metric.
呼叫中心数据异常检测的特征选择
在这项研究中,我们提出了设计用于检测呼叫中心座席不当行为的机器学习模型的过程。基于从给定电话会话的录音中提取的特征,训练、评估和比较适当的一类支持向量机、隔离森林和多变量高斯模型,以确定最佳用例。实验中使用的标记数据来自真实的呼叫中心,结果表明该系统可用于真实场景。使用F1分数作为度量来验证使用的机器学习模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信