{"title":"Multi-Modal Biological Driver Monitoring via Ubiquitous Wearable Body Sensor Network","authors":"O. Dehzangi, Cayce Williams","doi":"10.1145/2750511.2750527","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to introduce the design of the next generation driver monitoring platform to be facilitated in the semi-autonomous automotive system infrastructure. In the context of connected vehicles, this work extends current infrastructure to include real-time driver monitoring and feedback. Rather than leaving the driver out of the process, the goal is to obtain a vehicle where the degree of autonomy is continuously changed in real-time as a function of uncertainty ranges for driver biological state and behavior. The evolution and dissemination of mobile technology has created exceptional opportunities for highly detailed and personalized data collection in a far more granular and cost effective way. However, turning this potential into practice requires algorithms and methodologies to transform these raw data into actionable information. We have developed a robust driver monitoring platform consisting of automotive sensors (i.e. OBD-II) that capture the real-time information of the vehicle and driving behavior as well as a heterogeneous wearable body sensor network that collects the driver biometrics (e.g., electroencephalography (EEG) and electrocardiogram (ECG)). Accurate synchronization and storage of such multi-source heterogeneous data were also developed and validated. Finally, The task of characterizing driver distraction using EEG signals was investigated in two different road conditions as a proof of concept.","PeriodicalId":91246,"journal":{"name":"DH'15: proceedings of the 5th International Conference on Digital Health 2015 : May 18-20, 2015, Florence, Italy. International Conference on Digital Health (5th : 2015 : Florence, Italy)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DH'15: proceedings of the 5th International Conference on Digital Health 2015 : May 18-20, 2015, Florence, Italy. International Conference on Digital Health (5th : 2015 : Florence, Italy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2750511.2750527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The objective of this paper is to introduce the design of the next generation driver monitoring platform to be facilitated in the semi-autonomous automotive system infrastructure. In the context of connected vehicles, this work extends current infrastructure to include real-time driver monitoring and feedback. Rather than leaving the driver out of the process, the goal is to obtain a vehicle where the degree of autonomy is continuously changed in real-time as a function of uncertainty ranges for driver biological state and behavior. The evolution and dissemination of mobile technology has created exceptional opportunities for highly detailed and personalized data collection in a far more granular and cost effective way. However, turning this potential into practice requires algorithms and methodologies to transform these raw data into actionable information. We have developed a robust driver monitoring platform consisting of automotive sensors (i.e. OBD-II) that capture the real-time information of the vehicle and driving behavior as well as a heterogeneous wearable body sensor network that collects the driver biometrics (e.g., electroencephalography (EEG) and electrocardiogram (ECG)). Accurate synchronization and storage of such multi-source heterogeneous data were also developed and validated. Finally, The task of characterizing driver distraction using EEG signals was investigated in two different road conditions as a proof of concept.