A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging

IF 5 Q1 ENGINEERING, BIOMEDICAL
Haoyang Chen, S. Agrawal, Mohamed Osman, Josiah Minotto, Shubham Mirg, Jinyun Liu, Ajay Dangi, Quyen Tran, Thomas Jackson, Sri-Rajasekhar Kothapalli
{"title":"A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging","authors":"Haoyang Chen, S. Agrawal, Mohamed Osman, Josiah Minotto, Shubham Mirg, Jinyun Liu, Ajay Dangi, Quyen Tran, Thomas Jackson, Sri-Rajasekhar Kothapalli","doi":"10.1101/2021.11.09.467971","DOIUrl":null,"url":null,"abstract":"Objective and Impact Statement Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improve diagnostic sensitivity and specificity. Introduction Currently, combining ultrasound, photoacoustic and optical imaging modalities is challenging because con-ventional ultrasound transducer arrays are optically opaque. As a result, complex geometries are used to co-align both optical and ultrasound waves in the same field of view. Methods One elegant solution is to make the ultrasound transducer transparent to light. Here, we demonstrate a novel transparent ultrasound transducer (TUT) liner array fabricated using a transparent lithium niobate piezoelectric material for real-time multimodal imaging. Results The TUT array consisted of 64 elements and centered at ∼ 6 MHz frequency. We demonstrate a quad-mode ultrasound, Doppler ultrasound, photoacoustic and fluorescence imaging in real-time using the TUT array directly coupled to the tissue mimicking phantoms. Conclusion The TUT array successfully showed a multimodal imaging capability, and has potential applications in diagnosing cancer, neuro and vascular diseases, including image-guided endoscopy and wearable imaging.","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"30 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.11.09.467971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 10

Abstract

Objective and Impact Statement Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improve diagnostic sensitivity and specificity. Introduction Currently, combining ultrasound, photoacoustic and optical imaging modalities is challenging because con-ventional ultrasound transducer arrays are optically opaque. As a result, complex geometries are used to co-align both optical and ultrasound waves in the same field of view. Methods One elegant solution is to make the ultrasound transducer transparent to light. Here, we demonstrate a novel transparent ultrasound transducer (TUT) liner array fabricated using a transparent lithium niobate piezoelectric material for real-time multimodal imaging. Results The TUT array consisted of 64 elements and centered at ∼ 6 MHz frequency. We demonstrate a quad-mode ultrasound, Doppler ultrasound, photoacoustic and fluorescence imaging in real-time using the TUT array directly coupled to the tissue mimicking phantoms. Conclusion The TUT array successfully showed a multimodal imaging capability, and has potential applications in diagnosing cancer, neuro and vascular diseases, including image-guided endoscopy and wearable imaging.
用于实时光学、超声和光声成像的透明超声阵列
超声和光学对比同时成像可以帮助以高空间分辨率绘制活体体内的结构、功能和分子生物标志物。有必要开发一个平台来促进这种多模态成像能力,以提高诊断的敏感性和特异性。目前,结合超声、光声和光学成像模式是具有挑战性的,因为传统的超声换能器阵列是光学不透明的。因此,复杂的几何形状被用于在同一视场中同时对准光学和超声波。方法将超声换能器制成透光材料是一种较好的解决方案。在这里,我们展示了一种新型的透明超声换能器(TUT)线性阵列,该阵列使用透明铌酸锂压电材料制成,用于实时多模态成像。结果TUT阵列由64个元件组成,以~ 6 MHz频率为中心。我们演示了四模超声,多普勒超声,光声和荧光成像实时使用TUT阵列直接耦合到组织模拟的幻影。结论TUT阵列成功展示了多模态成像能力,在肿瘤、神经和血管疾病的诊断中具有潜在的应用前景,包括图像引导内镜和可穿戴成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信