Field-Dependent Viscoelastic Properties of Graphite-based Magnetorheological Grease

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
N.A.M. Nasir, Nurhazimah, N. Mohamad, S.A. Mazlan, N.A. Nordin, E.F. Shair, M.A.A. Rahman
{"title":"Field-Dependent Viscoelastic Properties of Graphite-based Magnetorheological Grease","authors":"N.A.M. Nasir, Nurhazimah, N. Mohamad, S.A. Mazlan, N.A. Nordin, E.F. Shair, M.A.A. Rahman","doi":"10.15282/ijame.19.3.2022.04.0764","DOIUrl":null,"url":null,"abstract":"This paper highlights the effect of graphite on the dynamic viscoelastic properties of magnetorheological grease (MRG). Two types of MRG namely MRG and graphite-MRG, GMRG with 0 wt.% and 10 wt. % of graphite respectively was synthesized by using a mechanical stirrer. The rheological properties of both sample at various magnetic field strength from 0 to 0.603 T was analyzed via rheometer under oscillatory mode with strain ranging from 0.001 to 1% with fixed frequency at 1 Hz for strain sweep and frequency ranging from 0.1 to 80 Hz at a constant strain of 0.01 % for frequency sweep. Based on the result obtained, the value of storage and loss modulus are dependent on the graphite content. A high value of storage modulus was achieved in the GMRG sample at all applied magnetic field strengths within all frequency ranges. These phenomena related to the contribution of graphite to forming the chain structure with CIPs and offered a more stable and stronger structure as compared with MRG. Moreover, the reduction in the value of loss modulus in GMRG was noticed compared to MRG at on-state conditions reflected by the stable structure obtained by GMRG. Lastly, both samples displayed a strong solid-like (elastic) behavior due to the high value of storage modulus, G’ acquired compared to loss modulus, G’’ at all frequency ranges. Therefore, the utilization of graphite in MRG can be used in wide applications such as brake and seismic dampers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.3.2022.04.0764","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper highlights the effect of graphite on the dynamic viscoelastic properties of magnetorheological grease (MRG). Two types of MRG namely MRG and graphite-MRG, GMRG with 0 wt.% and 10 wt. % of graphite respectively was synthesized by using a mechanical stirrer. The rheological properties of both sample at various magnetic field strength from 0 to 0.603 T was analyzed via rheometer under oscillatory mode with strain ranging from 0.001 to 1% with fixed frequency at 1 Hz for strain sweep and frequency ranging from 0.1 to 80 Hz at a constant strain of 0.01 % for frequency sweep. Based on the result obtained, the value of storage and loss modulus are dependent on the graphite content. A high value of storage modulus was achieved in the GMRG sample at all applied magnetic field strengths within all frequency ranges. These phenomena related to the contribution of graphite to forming the chain structure with CIPs and offered a more stable and stronger structure as compared with MRG. Moreover, the reduction in the value of loss modulus in GMRG was noticed compared to MRG at on-state conditions reflected by the stable structure obtained by GMRG. Lastly, both samples displayed a strong solid-like (elastic) behavior due to the high value of storage modulus, G’ acquired compared to loss modulus, G’’ at all frequency ranges. Therefore, the utilization of graphite in MRG can be used in wide applications such as brake and seismic dampers.
石墨基磁流变润滑脂的场相关粘弹性性能
研究了石墨对磁流变润滑脂(MRG)动态粘弹性的影响。采用机械搅拌器合成了含石墨量为0 wt.%和含石墨量为10 wt.%的两种MRG。通过流变仪分析了两种样品在0 ~ 0.603 T不同磁场强度下的流变特性,在振荡模式下,应变范围为0.001 ~ 1%,固定频率为1 Hz,应变扫描为0.1 ~ 80 Hz,恒定应变为0.01%,频率扫描为0.1 ~ 80 Hz。根据所得到的结果,存储模量和损耗模量与石墨含量有关。在所有频率范围内的所有外加磁场强度下,GMRG样品都获得了高值的存储模量。这些现象与石墨对cip形成链结构的贡献有关,与MRG相比,石墨提供了更稳定、更强的结构。此外,GMRG的损耗模量值比在稳态条件下的MRG有所降低,这反映在GMRG获得的稳定结构上。最后,由于在所有频率范围内获得的存储模量G′比损耗模量G′高,两种样品都表现出很强的固体样(弹性)行为。因此,石墨在MRG中的应用可以在制动器和减震器等方面得到广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信