{"title":"How to Survive Intensive Harvesting: The High Recruitment Rates of the Precious Mediterranean Red Coral (Corallium rubrum L. 1758)","authors":"M. Benedetti, L. Bramanti, G. Santangelo","doi":"10.3390/oceans4030021","DOIUrl":null,"url":null,"abstract":"The recruitment process is a fundamental step in population life cycles that determines survival, population demographic structure, and dynamics. The success of recruitment events repeated over successive years greatly affects the survival of long-lived gorgonian populations. Here, we report the recruitment process of the precious, heavily harvested Mediterranean gorgonian Corallium rubrum (red coral) on both settlement tiles and natural substrates over different Mediterranean areas. Red coral is a gonochoric internal brooder that reproduces in early summer. Lecithotrophic planulae settle 15–30 days after release in semi-dark environments at depths between 15 and 800 m. In autumn, 0.58–0.68 mm-wide recruits can be observed on the vaults of small crevices and caves and on rocky cliffs and boulders. Owing to their small size, there is limited knowledge of C. rubrum recruitment in the field. In this study, we examined the recruitment density and distribution in Canadells (Banyuls sur Mer, France) and Calafuria (Livorno, Italy) and compared these findings with those collected over different Mediterranean areas. Red coral exhibited high recruitment values ranging from 0.43 to 13.19 recruits dm−2. The distribution pattern of recruits, examined at a small spatial scale via nearest-neighbor distance analysis, revealed a significantly higher patch frequency on the natural substrate than on settlement tiles, presumably because of the scarcely available spots of free space on the former substrate, which are crowded by competitor species.","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"25 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/oceans4030021","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The recruitment process is a fundamental step in population life cycles that determines survival, population demographic structure, and dynamics. The success of recruitment events repeated over successive years greatly affects the survival of long-lived gorgonian populations. Here, we report the recruitment process of the precious, heavily harvested Mediterranean gorgonian Corallium rubrum (red coral) on both settlement tiles and natural substrates over different Mediterranean areas. Red coral is a gonochoric internal brooder that reproduces in early summer. Lecithotrophic planulae settle 15–30 days after release in semi-dark environments at depths between 15 and 800 m. In autumn, 0.58–0.68 mm-wide recruits can be observed on the vaults of small crevices and caves and on rocky cliffs and boulders. Owing to their small size, there is limited knowledge of C. rubrum recruitment in the field. In this study, we examined the recruitment density and distribution in Canadells (Banyuls sur Mer, France) and Calafuria (Livorno, Italy) and compared these findings with those collected over different Mediterranean areas. Red coral exhibited high recruitment values ranging from 0.43 to 13.19 recruits dm−2. The distribution pattern of recruits, examined at a small spatial scale via nearest-neighbor distance analysis, revealed a significantly higher patch frequency on the natural substrate than on settlement tiles, presumably because of the scarcely available spots of free space on the former substrate, which are crowded by competitor species.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.