{"title":"DFT and Monte Carlo Simulations on the Corrosion Inhibitive Potentials of some Furan-based Carbohydrazide Derivatives","authors":"","doi":"10.33263/lianbs124.113","DOIUrl":null,"url":null,"abstract":"Corrosion is a serious concern for the oil and construction industries. Controlling corrosion, therefore, remains essential in a bid to reduce costs and save lives. The anti-corrosion potentials of seven Furan-based Carbohydrazide derivatives were investigated using the density functional theory (DFT) approach and Monte Carlo (MC) simulation. The energies of the frontier molecular orbitals (FMOs) like the lowest unoccupied molecular orbital energy (ELUMO), highest occupied molecular orbital energy (EHOMO), energy gap (Eg), number of transferred electrons (ΔN), and other reactivity descriptors were computed at DFT/B3LYP/6-31G(d) level of theory. The reactive sites were determined using Fukui indices and molecular electrostatic potential (MESP) surface analysis. The adsorption behavior of the compounds on the Fe (110) surface was investigated in hydrochloric acid solution using MC simulation. The compounds displayed corrosion inhibition potentials as rationalized by their high EHOMO, A, σ, ΔN, ΔEback-donation, and low Eg, ELUMO, I, and η. This is because they showed the ability to donate electrons to the metal’s d-orbital while also accepting electrons via back-donation, as revealed by the MESP surface analysis. The MC simulation revealed good interaction between the compounds (inhibitors) and Fe(110) surface in the HCl medium. These compounds could be used as inhibitors of corrosion in the manufacturing industries.","PeriodicalId":18009,"journal":{"name":"Letters in Applied NanoBioScience","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied NanoBioScience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/lianbs124.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Corrosion is a serious concern for the oil and construction industries. Controlling corrosion, therefore, remains essential in a bid to reduce costs and save lives. The anti-corrosion potentials of seven Furan-based Carbohydrazide derivatives were investigated using the density functional theory (DFT) approach and Monte Carlo (MC) simulation. The energies of the frontier molecular orbitals (FMOs) like the lowest unoccupied molecular orbital energy (ELUMO), highest occupied molecular orbital energy (EHOMO), energy gap (Eg), number of transferred electrons (ΔN), and other reactivity descriptors were computed at DFT/B3LYP/6-31G(d) level of theory. The reactive sites were determined using Fukui indices and molecular electrostatic potential (MESP) surface analysis. The adsorption behavior of the compounds on the Fe (110) surface was investigated in hydrochloric acid solution using MC simulation. The compounds displayed corrosion inhibition potentials as rationalized by their high EHOMO, A, σ, ΔN, ΔEback-donation, and low Eg, ELUMO, I, and η. This is because they showed the ability to donate electrons to the metal’s d-orbital while also accepting electrons via back-donation, as revealed by the MESP surface analysis. The MC simulation revealed good interaction between the compounds (inhibitors) and Fe(110) surface in the HCl medium. These compounds could be used as inhibitors of corrosion in the manufacturing industries.