Spanning Configurations and Representation Stability

IF 0.7 4区 数学 Q2 MATHEMATICS
Brendan Pawlowski, Eric Ramos, B. Rhoades
{"title":"Spanning Configurations and Representation Stability","authors":"Brendan Pawlowski, Eric Ramos, B. Rhoades","doi":"10.37236/11136","DOIUrl":null,"url":null,"abstract":"Let $V_1, V_2, V_3, \\dots $ be a sequence of $\\mathbb {Q}$-vector spaces where $V_n$ carries an action of $\\mathfrak{S}_n$. Representation stability and multiplicity stability are two related notions of when the sequence $V_n$ has a limit. An important source of stability phenomena arises when $V_n$ is the $d^{th}$ homology group (for fixed $d$) of the configuration space of $n$ distinct points in some fixed topological space $X$. We replace these configuration spaces with moduli spaces of tuples $(W_1, \\dots, W_n)$ of subspaces of a fixed complex vector space $\\mathbb {C}^N$ such that $W_1 + \\cdots + W_n = \\mathbb {C}^N$. These include the varieties of spanning line configurations which are tied to the Delta Conjecture of symmetric function theory.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11136","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $V_1, V_2, V_3, \dots $ be a sequence of $\mathbb {Q}$-vector spaces where $V_n$ carries an action of $\mathfrak{S}_n$. Representation stability and multiplicity stability are two related notions of when the sequence $V_n$ has a limit. An important source of stability phenomena arises when $V_n$ is the $d^{th}$ homology group (for fixed $d$) of the configuration space of $n$ distinct points in some fixed topological space $X$. We replace these configuration spaces with moduli spaces of tuples $(W_1, \dots, W_n)$ of subspaces of a fixed complex vector space $\mathbb {C}^N$ such that $W_1 + \cdots + W_n = \mathbb {C}^N$. These include the varieties of spanning line configurations which are tied to the Delta Conjecture of symmetric function theory.
生成配置和表示稳定性
设$V_1, V_2, V_3, \dots $为$\mathbb {Q}$-向量空间的序列,其中$V_n$携带$\mathfrak{S}_n$的动作。表示稳定性和多重稳定性是序列$V_n$存在极限时的两个相关概念。当$V_n$是某固定拓扑空间$X$中$n$点的位形空间的$d^{th}$同调群(对于固定$d$)时,出现了稳定性现象的一个重要来源。我们用固定复向量空间$\mathbb {C}^N$的子空间元组$(W_1, \dots, W_n)$的模空间替换这些位形空间,使得$W_1 + \cdots + W_n = \mathbb {C}^N$。这些包括与对称函数理论的Delta猜想有关的各种生成线构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信