Evaluation of machine learning algorithms for image quality assessment

Ghislain Takam Tchendjou, Rshdee Alhakim, E. Simeu, F. Lebowsky
{"title":"Evaluation of machine learning algorithms for image quality assessment","authors":"Ghislain Takam Tchendjou, Rshdee Alhakim, E. Simeu, F. Lebowsky","doi":"10.1109/IOLTS.2016.7604697","DOIUrl":null,"url":null,"abstract":"In this article, we apply different machine learning (ML) techniques for building objective models, that permit to automatically assess the image quality in agreement with human visual perception. The six ML methods proposed are discriminant analysis, k-nearest neighbors, artificial neural network, non-linear regression, decision tree and fuzzy logic. Both the stability and the robustness of designed models are evaluated by using Monte-Carlo cross-validation approach (MCCV). The simulation results demonstrate that fuzzy logic model provides the best prediction accuracy.","PeriodicalId":6580,"journal":{"name":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","volume":"77 1","pages":"193-194"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2016.7604697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this article, we apply different machine learning (ML) techniques for building objective models, that permit to automatically assess the image quality in agreement with human visual perception. The six ML methods proposed are discriminant analysis, k-nearest neighbors, artificial neural network, non-linear regression, decision tree and fuzzy logic. Both the stability and the robustness of designed models are evaluated by using Monte-Carlo cross-validation approach (MCCV). The simulation results demonstrate that fuzzy logic model provides the best prediction accuracy.
评估用于图像质量评估的机器学习算法
在本文中,我们应用不同的机器学习(ML)技术来构建客观模型,允许自动评估与人类视觉感知一致的图像质量。提出了判别分析、k近邻、人工神经网络、非线性回归、决策树和模糊逻辑等六种机器学习方法。采用蒙特卡罗交叉验证方法对设计模型的稳定性和鲁棒性进行了评价。仿真结果表明,模糊逻辑模型具有较好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信