{"title":"An Add-on CNN based Model for the Detection of Tuberculosis using Chest X-ray Images","authors":"Roopa N K, M. S","doi":"10.14569/ijacsa.2023.0140313","DOIUrl":null,"url":null,"abstract":"—Machine Learning has been potentially contributing towards smart diagnosis in the medical domain for more than a decade with a target towards achieving higher accuracy in detection and classification. However, from the perspective of medical image processing, the contribution of machine learning towards segmentation is not been much to find in recent times. The proposed study considers a use case of Tuberculosis detection and classification from chest x-rays where a unique machine learning approach of Convolution Neural Network is adopted for segmentation of lung images from CXR. A computational framework is developed that performs segmentation, feature extraction, detection, and classification. The proposed system's study outcome is analyzed with and without segmentation over existing machine learning models to exhibit 99.85% accuracy, which is the highest score to date in contrast to existing approaches found in the literature. The study outcome based on the comparative analysis exhibits the effectiveness of the proposed system.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
—Machine Learning has been potentially contributing towards smart diagnosis in the medical domain for more than a decade with a target towards achieving higher accuracy in detection and classification. However, from the perspective of medical image processing, the contribution of machine learning towards segmentation is not been much to find in recent times. The proposed study considers a use case of Tuberculosis detection and classification from chest x-rays where a unique machine learning approach of Convolution Neural Network is adopted for segmentation of lung images from CXR. A computational framework is developed that performs segmentation, feature extraction, detection, and classification. The proposed system's study outcome is analyzed with and without segmentation over existing machine learning models to exhibit 99.85% accuracy, which is the highest score to date in contrast to existing approaches found in the literature. The study outcome based on the comparative analysis exhibits the effectiveness of the proposed system.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications