Forest stand delineation using Ikonos image and object based image analysis

U. Y. Ozkan, A. Yeşil
{"title":"Forest stand delineation using Ikonos image and object based image analysis","authors":"U. Y. Ozkan, A. Yeşil","doi":"10.17099/JFFIU.95674","DOIUrl":null,"url":null,"abstract":"Forest stand delineation using Ikonos image and object based image analysis Abstract: Together with the developments in satellite technology, it is considered that high resolution satellite data may be used as an alternative source of information to aerial photos in delineation of stand types. The study aims to reveal how detailed one could work to generate the map of stand types which form the basis of forest management plans using IKONOS satellite data. For this purpose, object based classification was applied to satellite image. Firstly, image segments which represent target objects were generated applying image segmentation algorithm to the satellite image. The image segments generated at three different levels according to different scale parameters and homogeneity criteria were classified according to standard nearest-neighbor approach. Classification accuracy was determined using both the stand maps of study area and ground control points. Overall accuracy was calculated as 58% (Kappa=0.54). Accordingly, it was understood that it was not possible to generate a stand map with sufficient accuracy from the IKONOS satellite image using automatic classification. Keywords: Ikonos, forest inventory, image segmentation, object based classification, stand map Ikonos goruntusu ve obje bazli goruntu analizi kullanilarak mescere tiplerinin ayrilmasi Ozet: Uydu teknolojisindeki gelismelerle birlikte yuksek cozunurluklu uydu verilerinin, mescere tipleri ayriminda hava fotograflarinin yerine alternatif bir bilgi kaynagi olarak kullanilabilecegi dusunulmektedir. Calismada, IKONOS uydu verisinden amenajman planlarinin temelini olusturan mescere tipleri haritasini duzenlemek icin ne kadar ayrintiya gidilebileceginin ortaya konulmasi amaclanmistir. Bunun icin uydu goruntusune obje bazli siniflandirma islemi uygulanmistir. Uydu goruntusune oncelikle goruntu dilimleme islmei uygulanarak, hedef objeleri temsil edecek goruntu dilimleri olusturulmustur. Farkli olcek parametreleri ve homojenlik kriterlerine gore uc farkli seviyede olusturulan goruntu dilimleri, standart en yakin komsu yaklasimina gore siniflandirilmistir. Siniflandirma sonuclarinin dogruluk degerlendirmesi calisma alanina ait mescere tipleri haritasindan ve arazi calismalari sirasinda alinan denetim noktalarindan faydalanilarak yapilmistir. Mescere tipleri duzeyinde yapilan siniflandirma sonuclarinin toplam dogruluk degeri %55 (Kappa=0.52) olarak hesaplanmistir. Buna gore, IKONOS uydu goruntusunden otomatik siniflandirma ile yeterli dogrulukta mescere tipleri haritasinin uretilmesinin mumkun olmadigi anlasilmistir. Anahtar Kelimeler: Ikonos, orman envanteri, goruntu dilimleme, obje bazli siniflandirma, mescere haritasi Received (Gelis):  11.01.2016 - Revised (Duzeltme):  18.01.2016 - Accepted (Kabul):  22.01.2016 Cite (Atif):  Ozkan, U.Y., Yesil, A., 2016. Forest stand delineation using Ikonos image and object based image analysis. Journal of the Faculty of Forestry Istanbul University 66(2): xxx-xxx. DOI: 10.17099/jffiu.xxxxx","PeriodicalId":17682,"journal":{"name":"Journal of the Faculty of Forestry Istanbul University","volume":"22 1","pages":"600-612"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Faculty of Forestry Istanbul University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17099/JFFIU.95674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Forest stand delineation using Ikonos image and object based image analysis Abstract: Together with the developments in satellite technology, it is considered that high resolution satellite data may be used as an alternative source of information to aerial photos in delineation of stand types. The study aims to reveal how detailed one could work to generate the map of stand types which form the basis of forest management plans using IKONOS satellite data. For this purpose, object based classification was applied to satellite image. Firstly, image segments which represent target objects were generated applying image segmentation algorithm to the satellite image. The image segments generated at three different levels according to different scale parameters and homogeneity criteria were classified according to standard nearest-neighbor approach. Classification accuracy was determined using both the stand maps of study area and ground control points. Overall accuracy was calculated as 58% (Kappa=0.54). Accordingly, it was understood that it was not possible to generate a stand map with sufficient accuracy from the IKONOS satellite image using automatic classification. Keywords: Ikonos, forest inventory, image segmentation, object based classification, stand map Ikonos goruntusu ve obje bazli goruntu analizi kullanilarak mescere tiplerinin ayrilmasi Ozet: Uydu teknolojisindeki gelismelerle birlikte yuksek cozunurluklu uydu verilerinin, mescere tipleri ayriminda hava fotograflarinin yerine alternatif bir bilgi kaynagi olarak kullanilabilecegi dusunulmektedir. Calismada, IKONOS uydu verisinden amenajman planlarinin temelini olusturan mescere tipleri haritasini duzenlemek icin ne kadar ayrintiya gidilebileceginin ortaya konulmasi amaclanmistir. Bunun icin uydu goruntusune obje bazli siniflandirma islemi uygulanmistir. Uydu goruntusune oncelikle goruntu dilimleme islmei uygulanarak, hedef objeleri temsil edecek goruntu dilimleri olusturulmustur. Farkli olcek parametreleri ve homojenlik kriterlerine gore uc farkli seviyede olusturulan goruntu dilimleri, standart en yakin komsu yaklasimina gore siniflandirilmistir. Siniflandirma sonuclarinin dogruluk degerlendirmesi calisma alanina ait mescere tipleri haritasindan ve arazi calismalari sirasinda alinan denetim noktalarindan faydalanilarak yapilmistir. Mescere tipleri duzeyinde yapilan siniflandirma sonuclarinin toplam dogruluk degeri %55 (Kappa=0.52) olarak hesaplanmistir. Buna gore, IKONOS uydu goruntusunden otomatik siniflandirma ile yeterli dogrulukta mescere tipleri haritasinin uretilmesinin mumkun olmadigi anlasilmistir. Anahtar Kelimeler: Ikonos, orman envanteri, goruntu dilimleme, obje bazli siniflandirma, mescere haritasi Received (Gelis):  11.01.2016 - Revised (Duzeltme):  18.01.2016 - Accepted (Kabul):  22.01.2016 Cite (Atif):  Ozkan, U.Y., Yesil, A., 2016. Forest stand delineation using Ikonos image and object based image analysis. Journal of the Faculty of Forestry Istanbul University 66(2): xxx-xxx. DOI: 10.17099/jffiu.xxxxx
基于Ikonos图像和基于目标的图像分析的林分圈定
摘要:随着卫星技术的发展,高分辨率卫星数据可以作为航空照片的替代信息来源,用于林分类型的圈定。这项研究的目的是揭示利用IKONOS卫星数据生成构成森林管理计划基础的林分类型地图的详细程度。为此,对卫星图像进行了基于目标的分类。首先,将图像分割算法应用于卫星图像,生成代表目标物体的图像片段;根据不同尺度参数和同质性准则生成的三个不同层次的图像片段,采用标准最近邻法进行分类。利用研究区林分图和地面控制点确定分类精度。总体准确率为58% (Kappa=0.54)。因此,有一项了解是,利用自动分类,不可能从IKONOS卫星图像产生具有足够精度的立地地图。关键词:猕猴桃,森林清查,图像分割,基于目标的分类,林分图猕猴桃goruntusu,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图,林分图。Calismada, IKONOS ydu verisininamajman planlarintemelini olusturi, mescere tiplerini haritasini, duzenlemek, nekarar ayrinii, gidilebilecininortaya, konulmasi, amacomist。在中国,中国政府的目标是建立一个独立的政府机构。维吾尔自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区自治区。Farkli olcek的参数为同源化的kriterine gore, Farkli olcek的参数为同源化的kriterine gore; Farkli olcek的参数为同源化的kriterine gore;四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川四川。结果表明:1)(Kappa=0.52); 2) (p < 0.05) (p < 0.05)布纳戈尔,IKONOS yudu gorunununden的翻译是:在流感病毒,流感病毒,流感病毒,流感病毒,流感病毒,流感病毒和流感病毒。anhtar Kelimeler: Ikonos, orman envanteri, goruntu dilimleme, obje bazli sininifldirma, mescere haritasi收稿(Gelis): 11.01.2016 -修订(Duzeltme): 18.01.2016 -接受(Kabul): 22.01.2016引用(Atif): Ozkan, U.Y, Yesil, A., 2016。基于Ikonos图像和基于目标的图像分析的林分圈定。伊斯坦布尔大学林业学院学报,66(2):xxx-xxx。DOI: 10.17099 / jffiu.xxxxx
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信