Zongze Wu, Sihui Liu, C. Ding, Zhigang Ren, Shengli Xie
{"title":"Learning Graph Similarity With Large Spectral Gap","authors":"Zongze Wu, Sihui Liu, C. Ding, Zhigang Ren, Shengli Xie","doi":"10.1109/TSMC.2019.2899398","DOIUrl":null,"url":null,"abstract":"Learning a good graph similarity matrix in data clustering is very crucial. The goal of clustering is to construct a good graph similarity matrix such that the similarity of points between the same classes is largest, and the similarity of points between different classes is smallest. In this paper, a more efficient subspace segmentation approach to learn a similarity matrix with large spectral gap is proposed. In our model, a robust self-representation coefficient matrix is learned by utilizing the Schatten- ${p}$ norm instead of the conventional rank function. Besides, the fast block-diagonal structure of the coefficient representation matrix is enhanced by learning and optimizing the co-association matrix with the soft label of clustering results simultaneously in a unified framework. The affinity graphs constructed in this paper can clearly reveal the intrinsic structures of the data sets. Extensive experiments on the real data sets demonstrate that our proposed method can perform better than the state-of-the-art methods.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"1 1","pages":"1590-1600"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2899398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Learning a good graph similarity matrix in data clustering is very crucial. The goal of clustering is to construct a good graph similarity matrix such that the similarity of points between the same classes is largest, and the similarity of points between different classes is smallest. In this paper, a more efficient subspace segmentation approach to learn a similarity matrix with large spectral gap is proposed. In our model, a robust self-representation coefficient matrix is learned by utilizing the Schatten- ${p}$ norm instead of the conventional rank function. Besides, the fast block-diagonal structure of the coefficient representation matrix is enhanced by learning and optimizing the co-association matrix with the soft label of clustering results simultaneously in a unified framework. The affinity graphs constructed in this paper can clearly reveal the intrinsic structures of the data sets. Extensive experiments on the real data sets demonstrate that our proposed method can perform better than the state-of-the-art methods.
期刊介绍:
The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.