Learning Graph Similarity With Large Spectral Gap

Zongze Wu, Sihui Liu, C. Ding, Zhigang Ren, Shengli Xie
{"title":"Learning Graph Similarity With Large Spectral Gap","authors":"Zongze Wu, Sihui Liu, C. Ding, Zhigang Ren, Shengli Xie","doi":"10.1109/TSMC.2019.2899398","DOIUrl":null,"url":null,"abstract":"Learning a good graph similarity matrix in data clustering is very crucial. The goal of clustering is to construct a good graph similarity matrix such that the similarity of points between the same classes is largest, and the similarity of points between different classes is smallest. In this paper, a more efficient subspace segmentation approach to learn a similarity matrix with large spectral gap is proposed. In our model, a robust self-representation coefficient matrix is learned by utilizing the Schatten- ${p}$ norm instead of the conventional rank function. Besides, the fast block-diagonal structure of the coefficient representation matrix is enhanced by learning and optimizing the co-association matrix with the soft label of clustering results simultaneously in a unified framework. The affinity graphs constructed in this paper can clearly reveal the intrinsic structures of the data sets. Extensive experiments on the real data sets demonstrate that our proposed method can perform better than the state-of-the-art methods.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"1 1","pages":"1590-1600"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2899398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Learning a good graph similarity matrix in data clustering is very crucial. The goal of clustering is to construct a good graph similarity matrix such that the similarity of points between the same classes is largest, and the similarity of points between different classes is smallest. In this paper, a more efficient subspace segmentation approach to learn a similarity matrix with large spectral gap is proposed. In our model, a robust self-representation coefficient matrix is learned by utilizing the Schatten- ${p}$ norm instead of the conventional rank function. Besides, the fast block-diagonal structure of the coefficient representation matrix is enhanced by learning and optimizing the co-association matrix with the soft label of clustering results simultaneously in a unified framework. The affinity graphs constructed in this paper can clearly reveal the intrinsic structures of the data sets. Extensive experiments on the real data sets demonstrate that our proposed method can perform better than the state-of-the-art methods.
大谱隙下的图相似度学习
学习一个好的图相似矩阵在数据聚类中是非常关键的。聚类的目标是构造一个良好的图相似矩阵,使相同类之间的点相似度最大,不同类之间的点相似度最小。本文提出了一种更有效的子空间分割方法来学习具有较大谱隙的相似矩阵。在我们的模型中,通过使用Schatten- ${p}$范数而不是传统的秩函数来学习鲁棒自表示系数矩阵。此外,在统一的框架下,通过对协关联矩阵与聚类结果的软标签同步学习和优化,增强了系数表示矩阵的快速块对角结构。本文所构造的关联图能够清晰地揭示数据集的内在结构。在实际数据集上的大量实验表明,我们提出的方法比目前最先进的方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
审稿时长
6.0 months
期刊介绍: The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信