A Connection between Fixed-Point Theorems and Tiling Problems

IF 0.9 2区 数学 Q2 MATHEMATICS
Jacek R. Jachymski , Bernd Schroder , James D. Stein Jr.
{"title":"A Connection between Fixed-Point Theorems and Tiling Problems","authors":"Jacek R. Jachymski ,&nbsp;Bernd Schroder ,&nbsp;James D. Stein Jr.","doi":"10.1006/jcta.1998.2960","DOIUrl":null,"url":null,"abstract":"<div><p>The classic Banach Contraction Principle states that any contraction on a complete metric space has a unique fixed point. Rather than requiring that a single operator be a contraction, we consider a minimum involving a set of powers of that operator and derive fixed-point results. Ordinary analytical techniques would be extremely unwieldy, and so we develop a method for attacking this problem by considering a related problem on tiling the integers.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"87 2","pages":"Pages 273-286"},"PeriodicalIF":0.9000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/jcta.1998.2960","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316598929600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 24

Abstract

The classic Banach Contraction Principle states that any contraction on a complete metric space has a unique fixed point. Rather than requiring that a single operator be a contraction, we consider a minimum involving a set of powers of that operator and derive fixed-point results. Ordinary analytical techniques would be extremely unwieldy, and so we develop a method for attacking this problem by considering a related problem on tiling the integers.

不动点定理与平铺问题的联系
经典的巴拿赫收缩原理指出,在完全度量空间上的任何收缩都有一个唯一的不动点。我们不要求单个算子是一个收缩算子,而是考虑涉及该算子的一组幂的最小值,并推导出不动点结果。普通的分析技术将是非常笨拙的,所以我们开发了一种方法来解决这个问题,通过考虑一个相关的问题,平铺整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信