{"title":"Colour stability of surface finishes on thermally modified beech wood","authors":"G. Slabejova, M. Smidriakova","doi":"10.5604/01.3001.0015.2391","DOIUrl":null,"url":null,"abstract":"Colour stability of surface finishes on thermally modified beech wood. The paper deals with the influence of the type of transparent surface finish on the change of colour of the surfaces of native beech wood and thermally modified wood. At the same time, the colour stability of three surface finishes on the surfaces of native and thermally modified beech wood was monitored. Beech wood was thermally modified at temperature of 125 °C for 6 hours. The thermal treatment was performed in a pressure autoclave APDZ 240, by the company Sundermann s.r.o in Banská Štiavnica. Three various types of surface finishes (synthetic, wax-oil, water-based) were applied onto the wood surfaces. The colour of the surfaces of native wood and thermally modified wood was measured in the system CIELab before and after surface finishing; the coordinates L*, a*, b*, C*ab and h*ab were measured. From the coordinates measured before and after surface finishing, the differences were calculated and then the colour difference ∆E* was calculated. Subsequently, the test specimens with the surface finishes were exposed to natural sunlight, behind glass in the interior for 60 days. The surface colour was measured at specified time of the exposure (10, 20, 30, 60 days). The results showed that the colour of the wood surfaces changed after application of the individual surface finishes; and the colour difference reached a change visible with a medium quality filter up to a high colour difference. The wax-oil surface finish caused a high colour difference on native wood and on thermally modified wood as well. On native beech wood, the lowest colour difference after exposure to sunlight was noticeable on the synthetic surface finish. On the surface of wood thermally modified, after exposure to sunlight, the lowest colour difference was noticeable on the surface with no surface finish.\n\n","PeriodicalId":8020,"journal":{"name":"Annals of WULS, Forestry and Wood Technology","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of WULS, Forestry and Wood Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.2391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Colour stability of surface finishes on thermally modified beech wood. The paper deals with the influence of the type of transparent surface finish on the change of colour of the surfaces of native beech wood and thermally modified wood. At the same time, the colour stability of three surface finishes on the surfaces of native and thermally modified beech wood was monitored. Beech wood was thermally modified at temperature of 125 °C for 6 hours. The thermal treatment was performed in a pressure autoclave APDZ 240, by the company Sundermann s.r.o in Banská Štiavnica. Three various types of surface finishes (synthetic, wax-oil, water-based) were applied onto the wood surfaces. The colour of the surfaces of native wood and thermally modified wood was measured in the system CIELab before and after surface finishing; the coordinates L*, a*, b*, C*ab and h*ab were measured. From the coordinates measured before and after surface finishing, the differences were calculated and then the colour difference ∆E* was calculated. Subsequently, the test specimens with the surface finishes were exposed to natural sunlight, behind glass in the interior for 60 days. The surface colour was measured at specified time of the exposure (10, 20, 30, 60 days). The results showed that the colour of the wood surfaces changed after application of the individual surface finishes; and the colour difference reached a change visible with a medium quality filter up to a high colour difference. The wax-oil surface finish caused a high colour difference on native wood and on thermally modified wood as well. On native beech wood, the lowest colour difference after exposure to sunlight was noticeable on the synthetic surface finish. On the surface of wood thermally modified, after exposure to sunlight, the lowest colour difference was noticeable on the surface with no surface finish.