Architecture for anomaly detection in a laser heating surface process

Javier Mesonero, C. Bielza, P. Larrañaga
{"title":"Architecture for anomaly detection in a laser heating surface process","authors":"Javier Mesonero, C. Bielza, P. Larrañaga","doi":"10.1109/ETFA.2017.8247777","DOIUrl":null,"url":null,"abstract":"Anomaly detection is an increasingly common task in many industrial environments. Cyber-physical systems stand out in this field due to their unique position in industrial areas. This paper introduces a new architecture aimed to detect anomalies in a real laser heating surface process, which is designed for field-programmable gate arrays (FPGAs). The FPGA design offers advantages of highly parallelized and pipelined architectures. The system will classify one process into normal or abnormal taking into account spatial information about where the laser spot is. The proposed design estimates a probability density function from data; then it performs an image convolution transforming the probability density function into a kernel density estimation function. This estimated function should be able to classify in real time.","PeriodicalId":6522,"journal":{"name":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"43 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2017.8247777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection is an increasingly common task in many industrial environments. Cyber-physical systems stand out in this field due to their unique position in industrial areas. This paper introduces a new architecture aimed to detect anomalies in a real laser heating surface process, which is designed for field-programmable gate arrays (FPGAs). The FPGA design offers advantages of highly parallelized and pipelined architectures. The system will classify one process into normal or abnormal taking into account spatial information about where the laser spot is. The proposed design estimates a probability density function from data; then it performs an image convolution transforming the probability density function into a kernel density estimation function. This estimated function should be able to classify in real time.
激光加热表面过程异常检测体系
在许多工业环境中,异常检测是一项越来越普遍的任务。网络物理系统因其在工业领域的独特地位而在这一领域脱颖而出。本文介绍了一种用于现场可编程门阵列(fpga)的新结构,旨在检测真实激光加热表面过程中的异常。FPGA设计提供了高度并行化和流水线架构的优势。该系统将考虑到激光光斑所在的空间信息,将一个过程分为正常或异常。该设计从数据中估计概率密度函数;然后进行图像卷积,将概率密度函数转化为核密度估计函数。这个估计函数应该能够实时分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信