Amy M Hurwitz, Wanzhi Huang, Mary K Estes, Robert L Atmar, Timothy Palzkill
{"title":"Deep sequencing of phage-displayed peptide libraries reveals sequence motif that detects norovirus.","authors":"Amy M Hurwitz, Wanzhi Huang, Mary K Estes, Robert L Atmar, Timothy Palzkill","doi":"10.1093/protein/gzw074","DOIUrl":null,"url":null,"abstract":"<p><p>Norovirus infections are the leading cause of non-bacterial gastroenteritis and result in about 21 million new cases and $2 billion in costs per year in the United States. Existing diagnostics have limited feasibility for point-of-care applications, so there is a clear need for more reliable, rapid, and simple-to-use diagnostic tools in order to contain outbreaks and prevent inappropriate treatments. In this study, a combination of phage display technology, deep sequencing and computational analysis was used to identify 12-mer peptides with specific binding to norovirus genotype GI.1 virus-like particles (VLPs). After biopanning, phage populations were sequenced and analyzed to identify a consensus peptide motif-YRSWXP. Two 12-mer peptides containing this sequence, NV-O-R5-3 and NV-O-R5-6, were further characterized to evaluate the motif's functional ability to detect VLPs and virus. Results indicated that these peptides effectively detect GI.1 VLPs in solid-phase peptide arrays, ELISAs and dot blots. Further, their specificity for the S-domain of the major capsid protein enables them to detect a wide range of GI and GII norovirus genotypes. Both peptides were able to detect virus in norovirus-positive clinical stool samples. Overall, the work reported here demonstrates the application of phage display coupled with next generation sequencing and computational analysis to uncover peptides with specific binding ability to a target protein for diagnostic applications. Further, the reagents characterized here can be integrated into existing diagnostic formats to detect clinically relevant genotypes of norovirus in stool.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":"55 1","pages":"129-139"},"PeriodicalIF":0.8000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzw074","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzw074","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 8
Abstract
Norovirus infections are the leading cause of non-bacterial gastroenteritis and result in about 21 million new cases and $2 billion in costs per year in the United States. Existing diagnostics have limited feasibility for point-of-care applications, so there is a clear need for more reliable, rapid, and simple-to-use diagnostic tools in order to contain outbreaks and prevent inappropriate treatments. In this study, a combination of phage display technology, deep sequencing and computational analysis was used to identify 12-mer peptides with specific binding to norovirus genotype GI.1 virus-like particles (VLPs). After biopanning, phage populations were sequenced and analyzed to identify a consensus peptide motif-YRSWXP. Two 12-mer peptides containing this sequence, NV-O-R5-3 and NV-O-R5-6, were further characterized to evaluate the motif's functional ability to detect VLPs and virus. Results indicated that these peptides effectively detect GI.1 VLPs in solid-phase peptide arrays, ELISAs and dot blots. Further, their specificity for the S-domain of the major capsid protein enables them to detect a wide range of GI and GII norovirus genotypes. Both peptides were able to detect virus in norovirus-positive clinical stool samples. Overall, the work reported here demonstrates the application of phage display coupled with next generation sequencing and computational analysis to uncover peptides with specific binding ability to a target protein for diagnostic applications. Further, the reagents characterized here can be integrated into existing diagnostic formats to detect clinically relevant genotypes of norovirus in stool.
期刊介绍:
Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.