Rakesh Basavegowda Krishnappa, S. G. Subramanya, Abhijit R Deshpande, B. Chakravarthi
{"title":"Effect of Serpentine Flow Field Channel Dimensions and Electrode Intrusion on Flow Hydrodynamics in an All-Iron Redox Flow Battery","authors":"Rakesh Basavegowda Krishnappa, S. G. Subramanya, Abhijit R Deshpande, B. Chakravarthi","doi":"10.3390/fluids8080237","DOIUrl":null,"url":null,"abstract":"This paper presents a study on flow hydrodynamics for single-channel serpentine flow field (SCSFF) and cross-split serpentine flow field configurations (CSSFF) for different geometric dimensions of channel and rib width ratios with electrode intrusion over varying compression ratios (CRs) in an all-iron redox flow battery. Pressure drops (Δp) measured experimentally across a cell active area of 131 cm2 for different electrolyte flow rates were numerically validated. A computational fluid dynamics study was conducted for detailed flow analyses, velocity magnitude contours, flow distribution, and uniformity index for the intrusion effect of a graphite felt electrode bearing a thickness of 6 mm with a channel compressed to varying percentages of 50%, 60%, and 70%. Experimental pressure drops (Δp) over the numerical value resulted in the maximum error approximated to 4%, showing good agreement. It was also reported that the modified version of the cross-split serpentine flow field, model D, had the lowest pressure drop, Δp, of 2223.4 pa, with a maximum uniformity index at the electrode midplane of 0.827 for CR 50%, across the active cell area. The pressure drop (Δp) was predominantly higher for increased compression ratios, wherein intrusion phenomena led to changes in electrochemical activity; it was found that the velocity distribution was quite uniform for a volumetric uniformity index greater than 80% in the felt.","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"1 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/fluids8080237","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a study on flow hydrodynamics for single-channel serpentine flow field (SCSFF) and cross-split serpentine flow field configurations (CSSFF) for different geometric dimensions of channel and rib width ratios with electrode intrusion over varying compression ratios (CRs) in an all-iron redox flow battery. Pressure drops (Δp) measured experimentally across a cell active area of 131 cm2 for different electrolyte flow rates were numerically validated. A computational fluid dynamics study was conducted for detailed flow analyses, velocity magnitude contours, flow distribution, and uniformity index for the intrusion effect of a graphite felt electrode bearing a thickness of 6 mm with a channel compressed to varying percentages of 50%, 60%, and 70%. Experimental pressure drops (Δp) over the numerical value resulted in the maximum error approximated to 4%, showing good agreement. It was also reported that the modified version of the cross-split serpentine flow field, model D, had the lowest pressure drop, Δp, of 2223.4 pa, with a maximum uniformity index at the electrode midplane of 0.827 for CR 50%, across the active cell area. The pressure drop (Δp) was predominantly higher for increased compression ratios, wherein intrusion phenomena led to changes in electrochemical activity; it was found that the velocity distribution was quite uniform for a volumetric uniformity index greater than 80% in the felt.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.