Using Approximation Non-Bayesian Computation with Fuzzy Data to Estimation Inverse Weibull Parameters and Reliability Function

N. Al-Noor, Shurooq A K Al-Sultany
{"title":"Using Approximation Non-Bayesian Computation with Fuzzy Data to Estimation Inverse Weibull Parameters and Reliability Function","authors":"N. Al-Noor, Shurooq A K Al-Sultany","doi":"10.30526/2017.IHSCICONF.1811","DOIUrl":null,"url":null,"abstract":"In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function in terms of their mean squared error values and integrated mean squared error values respectively.","PeriodicalId":13236,"journal":{"name":"Ibn Al-Haitham Journal For Pure And Applied Science","volume":"30 1","pages":"378-391"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibn Al-Haitham Journal For Pure And Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30526/2017.IHSCICONF.1811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function in terms of their mean squared error values and integrated mean squared error values respectively.
利用模糊数据的近似非贝叶斯计算估计反威布尔参数和可靠性函数
在实际情况下,所有的观察和测量都不是精确的数字,而是或多或少的不精确,也称为模糊。因此,本文采用近似非贝叶斯计算方法来估计模糊数据下的反威布尔参数和可靠性函数。最大似然估计和矩估计作为非贝叶斯估计得到。基于“牛顿-拉夫森”和“期望-最大化”两种迭代技术,对极大似然估计量进行了数值推导。此外,我们通过蒙特卡罗模拟研究进行数值比较,分别得到参数和可靠性函数的均方误差值和积分均方误差值的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信