W. Techitdheera, C. Thassana, W. Pecharapa, J. Nukaew
{"title":"Growth and characterization of Ni3FeN thin films by reactive gas timing RF magnetron sputtering","authors":"W. Techitdheera, C. Thassana, W. Pecharapa, J. Nukaew","doi":"10.1109/INEC.2010.5424982","DOIUrl":null,"url":null,"abstract":"Ni<inf>3</inf>FeN films were deposited on the glass substrate at room temperature by reactive gas timing rf magnetron sputtering, with two conditions: (1) a time period of Ar∶N<inf>2</inf> gas (2) a flow rate of Ar∶N<inf>2</inf> gas. Our results show that sputter rate increase with increasing of a time period and the rate of Ar∶N<inf>2</inf> gas. The crystal structure of thin films was investigated by x-ray diffraction show fcc structure of Ni<inf>3</inf>FeN (200) plane. The lattice constants increase with increasing of the flow rate of the nitrogen gas but it decrease with increasing of a time period of Ar gas. The grain size of thin films were investigated by atomic force microscope show the size range between 20 – 120 nm.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"19 1","pages":"1151-1152"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5424982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ni3FeN films were deposited on the glass substrate at room temperature by reactive gas timing rf magnetron sputtering, with two conditions: (1) a time period of Ar∶N2 gas (2) a flow rate of Ar∶N2 gas. Our results show that sputter rate increase with increasing of a time period and the rate of Ar∶N2 gas. The crystal structure of thin films was investigated by x-ray diffraction show fcc structure of Ni3FeN (200) plane. The lattice constants increase with increasing of the flow rate of the nitrogen gas but it decrease with increasing of a time period of Ar gas. The grain size of thin films were investigated by atomic force microscope show the size range between 20 – 120 nm.