Klytaimnistra Katsara, G. Kenanakis, E. Alissandrakis, V. Papadakis
{"title":"Honey Quality and Microplastic Migration from Food Packaging: A Potential Threat for Consumer Health?","authors":"Klytaimnistra Katsara, G. Kenanakis, E. Alissandrakis, V. Papadakis","doi":"10.3390/microplastics1030030","DOIUrl":null,"url":null,"abstract":"In ancient Greece, people said that “honey is the Food of the Gods”, and they were right. They believed that honey fell from the sky, with the morning dew, on the flowers and leaves, and from this point, the bees collected it. Honey is one of the most nutritious food products, which can be found in most homes. A lot of honey products are stored in different types of packaging materials, including plastics. Plastic packaging has been studied for the migration of plasticizers, chemical compounds, and MPs and NPs in foodstuffs. Most of them have been achieved through food simulations, while some studies managed to detect and isolate MPs/NPs. Recent studies presented evidence for the presence of MPs/NPs in honey products but not directly connected to food packaging or to the different types of honey and their properties (viscosity, pH value, and moisture content) or their storing conditions (temperature, humidity, light, and time). Spectroscopic and analytical techniques like Raman, FTIR, HPLC, and GC-MS are in the foreground for MP/NP detection and identification, but a universal way of isolation, detection, characterization, and quantification has not yet been found. This leaves an open field for more work to be done to clarify the factors affecting the migration of plastic packaging material in honey.","PeriodicalId":74190,"journal":{"name":"Microplastics and nanoplastics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microplastics and nanoplastics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microplastics1030030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In ancient Greece, people said that “honey is the Food of the Gods”, and they were right. They believed that honey fell from the sky, with the morning dew, on the flowers and leaves, and from this point, the bees collected it. Honey is one of the most nutritious food products, which can be found in most homes. A lot of honey products are stored in different types of packaging materials, including plastics. Plastic packaging has been studied for the migration of plasticizers, chemical compounds, and MPs and NPs in foodstuffs. Most of them have been achieved through food simulations, while some studies managed to detect and isolate MPs/NPs. Recent studies presented evidence for the presence of MPs/NPs in honey products but not directly connected to food packaging or to the different types of honey and their properties (viscosity, pH value, and moisture content) or their storing conditions (temperature, humidity, light, and time). Spectroscopic and analytical techniques like Raman, FTIR, HPLC, and GC-MS are in the foreground for MP/NP detection and identification, but a universal way of isolation, detection, characterization, and quantification has not yet been found. This leaves an open field for more work to be done to clarify the factors affecting the migration of plastic packaging material in honey.