S. Pelaez, C. Deline, J. Stein, B. Marion, Kevin Anderson, M. Muller
{"title":"Effect of torque-tube parameters on rear-irradiance and rear-shading loss for bifacial PV performance on single-axis tracking systems","authors":"S. Pelaez, C. Deline, J. Stein, B. Marion, Kevin Anderson, M. Muller","doi":"10.1109/PVSC40753.2019.9198975","DOIUrl":null,"url":null,"abstract":"The emergence of cost-competitive bifacial PV modules has raised the question of the additional value of bifacial 1-axis tracking arrays, in particular when considering rear-irradiance losses from the tracker system itself. In this work, the effect of different geometries and materials of torque tubes is evaluated through ray-trace simulations and found to cause rear irradiance shading factors between 2% to 8% for systems without gap between the modules in 2-UP configuration. Inclusion of a gap between the modules can offset the shading factor. Electrical mismatch is also evaluated for the various configurations, and a methodology to apply shading factor and electrical mismatch loss to rear irradiance from the calculated loss in DC power, which averages 1% for the systems explored here, is proposed.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"92 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.9198975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The emergence of cost-competitive bifacial PV modules has raised the question of the additional value of bifacial 1-axis tracking arrays, in particular when considering rear-irradiance losses from the tracker system itself. In this work, the effect of different geometries and materials of torque tubes is evaluated through ray-trace simulations and found to cause rear irradiance shading factors between 2% to 8% for systems without gap between the modules in 2-UP configuration. Inclusion of a gap between the modules can offset the shading factor. Electrical mismatch is also evaluated for the various configurations, and a methodology to apply shading factor and electrical mismatch loss to rear irradiance from the calculated loss in DC power, which averages 1% for the systems explored here, is proposed.