Determining underwater vehicle movement from sonar data in relatively featureless seafloor tracking missions

A. Spears, A. Howard, M. West, Thomas Collins
{"title":"Determining underwater vehicle movement from sonar data in relatively featureless seafloor tracking missions","authors":"A. Spears, A. Howard, M. West, Thomas Collins","doi":"10.1109/WACV.2014.6836007","DOIUrl":null,"url":null,"abstract":"Navigation through underwater environments is challenging given the lack of accurate positioning systems. The determination of underwater vehicle movement using an integrated acoustic sonar sensor would provide underwater vehicles with greatly increased autonomous navigation capabilities. A forward looking sonar sensor may be used for determining autonomous vehicle movement using filtering and optical flow algorithms. Optical flow algorithms have shown excellent results for vision image processing. However, they have been found difficult to implement using sonar data due to the high level of noise present, as well as the widely varying appearances of objects from frame to frame. For the bottom tracking applications considered, the simplifying assumption can be made that all features move with an equivalent direction and magnitude between frames. Statistical analysis of all estimated feature movements provides an accurate estimate of the overall shift, which translates directly to the vehicle movement. Results using acoustic sonar data are presented which illustrate the effectiveness of this methodology.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"1 1","pages":"909-916"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Navigation through underwater environments is challenging given the lack of accurate positioning systems. The determination of underwater vehicle movement using an integrated acoustic sonar sensor would provide underwater vehicles with greatly increased autonomous navigation capabilities. A forward looking sonar sensor may be used for determining autonomous vehicle movement using filtering and optical flow algorithms. Optical flow algorithms have shown excellent results for vision image processing. However, they have been found difficult to implement using sonar data due to the high level of noise present, as well as the widely varying appearances of objects from frame to frame. For the bottom tracking applications considered, the simplifying assumption can be made that all features move with an equivalent direction and magnitude between frames. Statistical analysis of all estimated feature movements provides an accurate estimate of the overall shift, which translates directly to the vehicle movement. Results using acoustic sonar data are presented which illustrate the effectiveness of this methodology.
在相对无特征的海底跟踪任务中,从声纳数据确定水下航行器的运动
由于缺乏精确的定位系统,在水下环境中导航是一项挑战。利用集成声呐传感器确定水下航行器的运动将大大提高水下航行器的自主导航能力。前视声纳传感器可用于通过滤波和光流算法确定自动车辆的运动。光流算法在视觉图像处理中表现出优异的效果。然而,由于存在高水平的噪声,以及从一帧到另一帧物体的广泛变化的外观,它们已经发现难以使用声纳数据来实现。对于所考虑的底部跟踪应用,可以简化假设所有特征在帧之间以相同的方向和大小移动。对所有估计的特征运动的统计分析提供了对整体位移的准确估计,这直接转化为车辆的运动。利用声呐数据的结果说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信