Andrés Canales-Johnson, E. Merlo, T. Bekinschtein, A. Arzi
{"title":"Neural Dynamics of Associative Learning during Human Sleep","authors":"Andrés Canales-Johnson, E. Merlo, T. Bekinschtein, A. Arzi","doi":"10.1093/cercor/bhz197","DOIUrl":null,"url":null,"abstract":"Recent evidence indicate that humans can learn entirely new information during sleep. To elucidate the neural dynamics underlying sleep-learning we investigated brain activity during auditory-olfactory discriminatory associative learning in human sleep. We found that learning-related delta and sigma neural changes are involved in early acquisition stages, when new associations are being formed. In contrast, learning-related theta activity emerged in later stages of the learning process, after tone-odour associations were already established. These findings suggest that learning new associations during sleep is signalled by a dynamic interplay between slow-waves, sigma and theta activity.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"3 1","pages":"1708 - 1715"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cercor/bhz197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Recent evidence indicate that humans can learn entirely new information during sleep. To elucidate the neural dynamics underlying sleep-learning we investigated brain activity during auditory-olfactory discriminatory associative learning in human sleep. We found that learning-related delta and sigma neural changes are involved in early acquisition stages, when new associations are being formed. In contrast, learning-related theta activity emerged in later stages of the learning process, after tone-odour associations were already established. These findings suggest that learning new associations during sleep is signalled by a dynamic interplay between slow-waves, sigma and theta activity.