{"title":"Recovering the O VII absorption distributions from X-ray data","authors":"Nichole Gray, Cameron T. Pratt, J. Bregman","doi":"10.1117/1.JATIS.9.3.038005","DOIUrl":null,"url":null,"abstract":"Abstract. The absorption by gas toward background continuum sources informs us about the cosmic density of gas components as well as the hosts responsible for the absorption (galaxies, clusters, and cosmic filaments). Cosmic absorption line distributions are distorted near the detection threshold (S / N ≈ 3) due to true lines being scattered to a lower signal-to-noise (S/N) and false detections occurring at the same S/N. We simulate absorption line distributions in the presence of noise and consider two models for recovery: a parametric fitting of the noise plus a cut-off power law absorption line distribution and a non-parametric fit in which the negative absorption line distribution (emission lines) is subtracted from the positive S/N absorption line distribution (flip and subtract). We show that both approaches work equally well and can use data with S / N ≳ 3 to constrain the fit. For an input of about 100 absorption line systems, the number of systems is recovered to ≈14 % . This investigation examined the O VII X-ray absorption line distribution, but the approach should be broadly applicable for statistically well-behaved data.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JATIS.9.3.038005","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The absorption by gas toward background continuum sources informs us about the cosmic density of gas components as well as the hosts responsible for the absorption (galaxies, clusters, and cosmic filaments). Cosmic absorption line distributions are distorted near the detection threshold (S / N ≈ 3) due to true lines being scattered to a lower signal-to-noise (S/N) and false detections occurring at the same S/N. We simulate absorption line distributions in the presence of noise and consider two models for recovery: a parametric fitting of the noise plus a cut-off power law absorption line distribution and a non-parametric fit in which the negative absorption line distribution (emission lines) is subtracted from the positive S/N absorption line distribution (flip and subtract). We show that both approaches work equally well and can use data with S / N ≳ 3 to constrain the fit. For an input of about 100 absorption line systems, the number of systems is recovered to ≈14 % . This investigation examined the O VII X-ray absorption line distribution, but the approach should be broadly applicable for statistically well-behaved data.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.