Synergism of Microwave Irradiation and Immobilized Lipase Catalysis in Synthesis of 4,8-dimethylnon-7-en-1yl (2E)-3-phenylpro-2-enolate

G. Yadav, Somnath Shinde
{"title":"Synergism of Microwave Irradiation and Immobilized Lipase Catalysis in Synthesis of 4,8-dimethylnon-7-en-1yl (2E)-3-phenylpro-2-enolate","authors":"G. Yadav, Somnath Shinde","doi":"10.15866/IREBIC.V3I5.1570","DOIUrl":null,"url":null,"abstract":"Microwave irradiation and biocatalysis are important and rapidly developing technologies in green and sustainable engineering. The synergistic effect of microwave irradiation and lipase catalysis in transesterification of ethyl (2E)-3-phenylprop-2-enoate and 4,8-dimethylnon-7-en-1-ol was studied using immobilized enzymes such as Novozym 435, Lipase AYS amino, Lipozyme RMIM and Lipozyme TL IM. Novozym 435 was the best catalyst amongst studied. The effects of various parameters affecting the conversion and initial rates of transesterification were studied to establish kinetics and mechanism. There is synergism between enzyme catalysis and microwave irradiation, an increase in initial rates up to 2.3-fold was observed under microwave irradiation than that under conventional heating. With a substrate concentration of 0.03333 kmol/m3 of ethyl (2E)-3-phenylprop-2-enoate and 0.06667 kmol/m3 of 4,8-dimethylnon-7-en-1-ol in n-heptane, Novozym 435 offered a conversion of 94 % at 333 K in 21600 s. The analysis of initial rate data and progress curve data showed that the reaction obeys ternary complex ordered bi–bi mechanism with inhibition by 4,8-dimethylnon-7-en-1-ol. The theoretical predictions and experimental data match very well. These studies were also extended to other alcohols viz, n-butanol, n-pentanol, (3Z)-4,8-dimethylnon-3,7-dien-1-ol, benzyl alcohol, isoamyl alcohol, glycidol and 1,4-butanediol","PeriodicalId":14377,"journal":{"name":"International Review of Biophysical Chemistry","volume":"31 1","pages":"136-143"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Biophysical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/IREBIC.V3I5.1570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Microwave irradiation and biocatalysis are important and rapidly developing technologies in green and sustainable engineering. The synergistic effect of microwave irradiation and lipase catalysis in transesterification of ethyl (2E)-3-phenylprop-2-enoate and 4,8-dimethylnon-7-en-1-ol was studied using immobilized enzymes such as Novozym 435, Lipase AYS amino, Lipozyme RMIM and Lipozyme TL IM. Novozym 435 was the best catalyst amongst studied. The effects of various parameters affecting the conversion and initial rates of transesterification were studied to establish kinetics and mechanism. There is synergism between enzyme catalysis and microwave irradiation, an increase in initial rates up to 2.3-fold was observed under microwave irradiation than that under conventional heating. With a substrate concentration of 0.03333 kmol/m3 of ethyl (2E)-3-phenylprop-2-enoate and 0.06667 kmol/m3 of 4,8-dimethylnon-7-en-1-ol in n-heptane, Novozym 435 offered a conversion of 94 % at 333 K in 21600 s. The analysis of initial rate data and progress curve data showed that the reaction obeys ternary complex ordered bi–bi mechanism with inhibition by 4,8-dimethylnon-7-en-1-ol. The theoretical predictions and experimental data match very well. These studies were also extended to other alcohols viz, n-butanol, n-pentanol, (3Z)-4,8-dimethylnon-3,7-dien-1-ol, benzyl alcohol, isoamyl alcohol, glycidol and 1,4-butanediol
微波辐射与固定化脂肪酶催化合成4,8-二甲基非7-烯-1基(2E)-3-苯基原-2-烯酸酯的协同作用
微波辐射和生物催化是绿色和可持续工程中发展迅速的重要技术。采用Novozym 435、脂肪酶AYS氨基、Lipozyme RMIM和Lipozyme TL IM等固定化酶,研究了微波辐射与脂肪酶催化在(2E)-3-苯基丙烯酸乙酯和4,8-二甲基非7-烯-1-醇酯交换反应中的协同作用。Novozym 435是研究中最好的催化剂。研究了各种参数对酯交换转化率和初始速率的影响,建立了反应动力学和反应机理。微波辐射与酶催化之间存在协同作用,微波辐射下酶催化的初始速率比传统加热下提高了2.3倍。当底物浓度为0.03333 kmol/m3的乙基(2E)-3-苯基-2-烯酸酯和0.06667 kmol/m3的4,8-二甲基-7-烯-1-醇时,Novozym 435的转化率为94%,温度为333 K,反应时间为21600 s。初始速率数据和进展曲线数据分析表明,该反应服从三元配合物有序bi-bi机制,并有4,8-二甲基非7-烯-1-醇的抑制作用。理论预测与实验数据吻合良好。这些研究也扩展到其他醇,即正丁醇、正戊醇、(3Z)-4,8-二甲基非3,7-二烯-1-醇、苯甲醇、异戊醇、甘油和1,4-丁二醇
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信