Enhancing Performance of a Deep Neural Network: A Comparative Analysis of Optimization Algorithms

IF 1.7 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Noor Fatima
{"title":"Enhancing Performance of a Deep Neural Network: A Comparative Analysis of Optimization Algorithms","authors":"Noor Fatima","doi":"10.14201/adcaij2020927990","DOIUrl":null,"url":null,"abstract":"Adopting the most suitable optimization algorithm (optimizer) for a Neural Network Model is among the most important ventures in Deep Learning and all classes of Neural Networks. It’s a case of trial and error experimentation. In this paper, we will experiment with seven of the most popular optimization algorithms namely: sgd, rmsprop, adagrad, adadelta, adam, adamax and nadam on four unrelated datasets discretely, to conclude which one dispenses the best accuracy, efficiency and performance to our deep neural network. This work will provide insightful analysis to a data scientist in choosing the best optimizer while modelling their deep neural network.","PeriodicalId":42597,"journal":{"name":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","volume":"47 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14201/adcaij2020927990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 20

Abstract

Adopting the most suitable optimization algorithm (optimizer) for a Neural Network Model is among the most important ventures in Deep Learning and all classes of Neural Networks. It’s a case of trial and error experimentation. In this paper, we will experiment with seven of the most popular optimization algorithms namely: sgd, rmsprop, adagrad, adadelta, adam, adamax and nadam on four unrelated datasets discretely, to conclude which one dispenses the best accuracy, efficiency and performance to our deep neural network. This work will provide insightful analysis to a data scientist in choosing the best optimizer while modelling their deep neural network.
增强深度神经网络的性能:优化算法的比较分析
为神经网络模型采用最合适的优化算法(优化器)是深度学习和所有类型的神经网络中最重要的冒险之一。这是一个反复试验的案例。在本文中,我们将在四个不相关的数据集上离散地实验七种最流行的优化算法:sgd, rmsprop, adagrad, adadelta, adam, adamax和nadam,以得出哪一种算法为我们的深度神经网络分配了最好的精度,效率和性能。这项工作将为数据科学家在建模深度神经网络时选择最佳优化器提供有见地的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信