Long Time Behavior for a System of Differential Equations with Non-Lipschitzian Nonlinearities

N. Tatar
{"title":"Long Time Behavior for a System of Differential Equations with Non-Lipschitzian Nonlinearities","authors":"N. Tatar","doi":"10.1155/2014/252674","DOIUrl":null,"url":null,"abstract":"We consider a general system of nonlinear ordinary differential equations of first order. The nonlinearities involve distributed delays in addition to the states. In turn, the distributed delays involve nonlinear functions of the different variables and states. An explicit bound for solutions is obtained under some rather reasonable conditions. Several special cases of this system may be found in neural network theory. As a direct application of our result it is shown how to obtain global existence and, more importantly, convergence to zero at an exponential rate in a certain norm. All these nonlinearities (including the activation functions) may be non-Lipschitz and unbounded.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"29 6 1","pages":"252674:1-252674:7"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/252674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider a general system of nonlinear ordinary differential equations of first order. The nonlinearities involve distributed delays in addition to the states. In turn, the distributed delays involve nonlinear functions of the different variables and states. An explicit bound for solutions is obtained under some rather reasonable conditions. Several special cases of this system may be found in neural network theory. As a direct application of our result it is shown how to obtain global existence and, more importantly, convergence to zero at an exponential rate in a certain norm. All these nonlinearities (including the activation functions) may be non-Lipschitz and unbounded.
一类非lipschitzian非线性微分方程组的长时间行为
考虑一类一阶非线性常微分方程的一般方程组。非线性除状态外还涉及分布延迟。反过来,分布延迟涉及不同变量和状态的非线性函数。在一些相当合理的条件下,得到了解的显式界。在神经网络理论中可以找到该系统的一些特殊情况。作为我们的结果的一个直接应用,给出了如何获得全局存在性,更重要的是如何在一定范数下以指数速率收敛到零。所有这些非线性(包括激活函数)都可以是非lipschitz和无界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信