{"title":"Neural Network-Based Sampled-Data Control for Switched Uncertain Nonlinear Systems","authors":"Shi Li, C. Ahn, Jian Guo, Z. Xiang","doi":"10.1109/TSMC.2019.2954231","DOIUrl":null,"url":null,"abstract":"This article investigates the sampled-data stabilization problem of a class of switched nonlinear systems. All subsystems of the considered system are allowed to be unstabilizable. To relax the restrictions on unknown nonlinear functions in some existing results, we use the nonlinear approximation ability of radial basis function neural networks. Novel mode-dependent adaptive laws and sampled-data control laws are constructed by only using the system states’ information at sampling instants. A novel sampled-data switching condition is derived, which can avoid Zeno behavior effectively. To guarantee that all states of the closed-loop system (CLS) are bounded, a new allowable sampling period is deduced. Finally, we demonstrate the proposed method’s effectiveness through two examples.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"60 1","pages":"5437-5445"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2954231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
This article investigates the sampled-data stabilization problem of a class of switched nonlinear systems. All subsystems of the considered system are allowed to be unstabilizable. To relax the restrictions on unknown nonlinear functions in some existing results, we use the nonlinear approximation ability of radial basis function neural networks. Novel mode-dependent adaptive laws and sampled-data control laws are constructed by only using the system states’ information at sampling instants. A novel sampled-data switching condition is derived, which can avoid Zeno behavior effectively. To guarantee that all states of the closed-loop system (CLS) are bounded, a new allowable sampling period is deduced. Finally, we demonstrate the proposed method’s effectiveness through two examples.
期刊介绍:
The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.