The Effect of Nanoparticles (n-HAp, n-TiO2) on the Thermal Properties and Biomechanical Analysis of Polymeric Composite Materials for Dental Applications

IF 0.4 Q4 NANOSCIENCE & NANOTECHNOLOGY
A. A. Mohammed, Jawad K. Oleiwi, E. Al-Hassani
{"title":"The Effect of Nanoparticles (n-HAp, n-TiO2) on the Thermal Properties and Biomechanical Analysis of Polymeric Composite Materials for Dental Applications","authors":"A. A. Mohammed, Jawad K. Oleiwi, E. Al-Hassani","doi":"10.4028/www.scientific.net/NHC.33.13","DOIUrl":null,"url":null,"abstract":"Polyetheretherketone (PEEK), as implants is broadly employed in orthopedic and dental uses owing to the brilliant chemical stability, biocompatibility and mechanical strength in addition to the modulus of elasticity alike the human bone. In the present work, the composite materials with PEEK as matrix and (n-HAp, n-TiO2) as the reinforced fillers loaded up to (1.5 wt%) were prepared by internal mixer and hot press. Following analysis by physical properties includes the thermal conductivity and the differential scanning calorimetry. Finite element analysis (FEA) was used to find the total deformation, Max. Von mises stress, elastic strain and safety factor. The results manifested that the thermal properties, total deformation and strain decreased with the increase of the reinforcement weight fraction, while, the stress and safety factor increased with the increased reinforcement weight fraction.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"22 15 1","pages":"13 - 34"},"PeriodicalIF":0.4000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/NHC.33.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Polyetheretherketone (PEEK), as implants is broadly employed in orthopedic and dental uses owing to the brilliant chemical stability, biocompatibility and mechanical strength in addition to the modulus of elasticity alike the human bone. In the present work, the composite materials with PEEK as matrix and (n-HAp, n-TiO2) as the reinforced fillers loaded up to (1.5 wt%) were prepared by internal mixer and hot press. Following analysis by physical properties includes the thermal conductivity and the differential scanning calorimetry. Finite element analysis (FEA) was used to find the total deformation, Max. Von mises stress, elastic strain and safety factor. The results manifested that the thermal properties, total deformation and strain decreased with the increase of the reinforcement weight fraction, while, the stress and safety factor increased with the increased reinforcement weight fraction.
纳米粒子(n-HAp, n-TiO2)对牙科高分子复合材料热性能及生物力学分析的影响
聚醚醚酮(PEEK)由于其优异的化学稳定性、生物相容性和机械强度以及与人骨相似的弹性模量,被广泛应用于骨科和牙科领域。本文以PEEK为基体,以(n-HAp, n-TiO2)为增强填料,通过内混和热压法制备了负载高达(1.5 wt%)的复合材料。随后的物理性质分析包括热导率和差示扫描量热法。采用有限元分析(FEA)求出总变形量Max。冯米塞斯应力、弹性应变和安全系数。结果表明:随着配筋率的增加,热性能、总变形和应变减小,而应力和安全系数随配筋率的增加而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Hybrids and Composites
Nano Hybrids and Composites NANOSCIENCE & NANOTECHNOLOGY-
自引率
0.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信