{"title":"Matched pair analysis of the Vlasov plasma","authors":"Ougul Esen, S. Sutlu","doi":"10.3934/JGM.2021011","DOIUrl":null,"url":null,"abstract":"We perform Hamiltonian (Lie-Poisson) analysis of the Vlasov plasma, and the dynamics of its kinetic moments, from the matched pair decomposition point of view. We express both of the (Lie-Poisson) systems as couplings of two of their \\textit{mutually interacting} (Lie-Poisson) subdynamics. Mutually acting systems are beyond the well-known semi-direct product theory. Accordingly, as the geometric framework of the present discussion, we address \\textit{matched pair Lie-Poisson} formulation permitting mutual interactions. Then, all mutual actions, as well as dual and induced cross-actions, are clearly computed for the kinetic moments and the Vlasov plasma. For both cases, we observe that one of the constitutive subdynamics is the compressible isentropic fluid flow, and the other is the higher-order ($\\geq 2$) kinetic moments. In this regard, the algebraic/geometric (matched pair) decomposition that we offer, is in perfect harmony with the physical intuition. To complete the discussion, we present a momentum formulation of the Vlasov plasma and, obtain the matched pair decomposition of this realization as well.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JGM.2021011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 10
Abstract
We perform Hamiltonian (Lie-Poisson) analysis of the Vlasov plasma, and the dynamics of its kinetic moments, from the matched pair decomposition point of view. We express both of the (Lie-Poisson) systems as couplings of two of their \textit{mutually interacting} (Lie-Poisson) subdynamics. Mutually acting systems are beyond the well-known semi-direct product theory. Accordingly, as the geometric framework of the present discussion, we address \textit{matched pair Lie-Poisson} formulation permitting mutual interactions. Then, all mutual actions, as well as dual and induced cross-actions, are clearly computed for the kinetic moments and the Vlasov plasma. For both cases, we observe that one of the constitutive subdynamics is the compressible isentropic fluid flow, and the other is the higher-order ($\geq 2$) kinetic moments. In this regard, the algebraic/geometric (matched pair) decomposition that we offer, is in perfect harmony with the physical intuition. To complete the discussion, we present a momentum formulation of the Vlasov plasma and, obtain the matched pair decomposition of this realization as well.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.