Effect of Functionalized CdSSe Quantum Dots in the CYP450 Activity of HEPG2 Cells

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. Alamo-Nole, Jury Cruz-Hernandez
{"title":"Effect of Functionalized CdSSe Quantum Dots in the CYP450 Activity of HEPG2 Cells","authors":"L. Alamo-Nole, Jury Cruz-Hernandez","doi":"10.3390/micro3020027","DOIUrl":null,"url":null,"abstract":"Quantum dots (QDs) have different properties: high electron density, magnetic moment, phosphorescence, photoluminescence (fluorescence), and strong optical absorption. The layer or ligands on the QDs surface has a vital role because they allow the stabilization and practical uses on different matrixes. Ligand exchange is a commonly carried out methodology to incorporate functional groups that alter the solubility, introduce electron transfer partners, integrate biological receptors, or improve the properties of the QDs surface. CdSSe QDs were synthesized using a microwave system using thioglycolic acid (TGA) as a sulfur source and cover agent. The TGA ligand was interchanged with cysteine (Cys), glutamic acid (GA), glutathione (GTO), glutaraldehyde (GLT), and lysine (Lys). The viability and response of the CYP1A1, CYP1A2, and CYP3A4 isoenzymes were directly measured in HEP-G2 cells after exposure to CdSSe-TGA, CdSSe-Cys, CdSSe-GA, CdSSe-GTO, CdSSe-GLT, and CdSSe-Lys. CdSSe and CdSSe-GTO (10 mg/L) decrease viability by around 65%. The response of the cytochrome isoenzymes is based on the organic ligand on the surface of the CdSSe QDs. Changes in CYP 1A1 could be related to carcinogenic xenobiotics. Fluorescence microscopy shows CdSSe QDs on and inside HEPG2 cells. The results confirm that apoptosis and necrosis are the principal mechanisms of decreased viability.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"73 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3020027","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum dots (QDs) have different properties: high electron density, magnetic moment, phosphorescence, photoluminescence (fluorescence), and strong optical absorption. The layer or ligands on the QDs surface has a vital role because they allow the stabilization and practical uses on different matrixes. Ligand exchange is a commonly carried out methodology to incorporate functional groups that alter the solubility, introduce electron transfer partners, integrate biological receptors, or improve the properties of the QDs surface. CdSSe QDs were synthesized using a microwave system using thioglycolic acid (TGA) as a sulfur source and cover agent. The TGA ligand was interchanged with cysteine (Cys), glutamic acid (GA), glutathione (GTO), glutaraldehyde (GLT), and lysine (Lys). The viability and response of the CYP1A1, CYP1A2, and CYP3A4 isoenzymes were directly measured in HEP-G2 cells after exposure to CdSSe-TGA, CdSSe-Cys, CdSSe-GA, CdSSe-GTO, CdSSe-GLT, and CdSSe-Lys. CdSSe and CdSSe-GTO (10 mg/L) decrease viability by around 65%. The response of the cytochrome isoenzymes is based on the organic ligand on the surface of the CdSSe QDs. Changes in CYP 1A1 could be related to carcinogenic xenobiotics. Fluorescence microscopy shows CdSSe QDs on and inside HEPG2 cells. The results confirm that apoptosis and necrosis are the principal mechanisms of decreased viability.
功能化CdSSe量子点对HEPG2细胞CYP450活性的影响
量子点(QDs)具有不同的性质:高电子密度、磁矩、磷光、光致发光(荧光)和强光吸收。量子点表面的层或配体具有至关重要的作用,因为它们允许在不同的基质上稳定和实际应用。配体交换是一种常用的方法,用于结合改变溶解度的官能团,引入电子转移伙伴,整合生物受体或改善量子点表面的性质。以巯基乙酸(TGA)为硫源和覆盖剂,采用微波系统合成了CdSSe量子点。TGA配体与半胱氨酸(Cys)、谷氨酸(GA)、谷胱甘肽(GTO)、戊二醛(GLT)和赖氨酸(Lys)交换。在暴露于cdse - tga、cdse - cys、cdse - ga、cdse - gto、cdse - glt和cdse - lys后,直接测定HEP-G2细胞中CYP1A1、CYP1A2和CYP3A4同工酶的活性和应答。CdSSe和CdSSe- gto (10 mg/L)使活性降低约65%。细胞色素同工酶的反应是基于CdSSe量子点表面的有机配体。CYP 1A1的变化可能与致癌性外源药物有关。荧光显微镜显示HEPG2细胞上和细胞内的CdSSe量子点。结果证实细胞凋亡和坏死是细胞活力下降的主要机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro & Nano Letters
Micro & Nano Letters 工程技术-材料科学:综合
CiteScore
3.30
自引率
0.00%
发文量
58
审稿时长
2.8 months
期刊介绍: Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities. Scope Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities. Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications. Typical topics include: Micro and nanostructures for the device communities MEMS and NEMS Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data Synthesis and processing Micro and nano-photonics Molecular machines, circuits and self-assembly Organic and inorganic micro and nanostructures Micro and nano-fluidics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信