Mobile Crowdsensing Task Allocation Model Based on Discrete Particle Swarm Optimization

S. Lou, Gang Liu, Zhiyu Chen, Jianwei Guo, Peng Liu
{"title":"Mobile Crowdsensing Task Allocation Model Based on Discrete Particle Swarm Optimization","authors":"S. Lou, Gang Liu, Zhiyu Chen, Jianwei Guo, Peng Liu","doi":"10.1109/cvidliccea56201.2022.9824089","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing (MCS) is a new crowdsourcing model. With the continuous development of MCS, more and more task requesters and workers participate in the MCS, and how to design a reasonable task allocation scheme hasbecome a hot topic of research. In this paper, we investigate the spatiotemporal task allocation problem considering task time constraints and workers’ execution capabilities, and proposean efficient task allocation algorithm based on the discrete particle swarm optimization to maximise social welfare. In order to further optimise the task allocation scheme, a greedy algorithm is introduced to reduce the distance workers have to travel to perform the task and hence the cost of performing the task. Simulation results show that the algorithm is effective in improving social welfare.","PeriodicalId":23649,"journal":{"name":"Vision","volume":"10 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvidliccea56201.2022.9824089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile crowdsensing (MCS) is a new crowdsourcing model. With the continuous development of MCS, more and more task requesters and workers participate in the MCS, and how to design a reasonable task allocation scheme hasbecome a hot topic of research. In this paper, we investigate the spatiotemporal task allocation problem considering task time constraints and workers’ execution capabilities, and proposean efficient task allocation algorithm based on the discrete particle swarm optimization to maximise social welfare. In order to further optimise the task allocation scheme, a greedy algorithm is introduced to reduce the distance workers have to travel to perform the task and hence the cost of performing the task. Simulation results show that the algorithm is effective in improving social welfare.
基于离散粒子群优化的移动众感知任务分配模型
移动众包(MCS)是一种新型的众包模式。随着管理系统的不断发展,越来越多的任务请求者和工作人员参与到管理系统中,如何设计合理的任务分配方案成为研究的热点。本文研究了考虑任务时间约束和工人执行能力的时空任务分配问题,提出了一种基于离散粒子群优化的高效任务分配算法,以实现社会福利最大化。为了进一步优化任务分配方案,引入了贪婪算法来减少工人执行任务的距离,从而减少执行任务的成本。仿真结果表明,该算法对提高社会福利是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信