Non-Hermitian Hamiltonian approach for electromagnetic wave propagation and dissipation in dielectric media

K. G. Zloshchastiev
{"title":"Non-Hermitian Hamiltonian approach for electromagnetic wave propagation and dissipation in dielectric media","authors":"K. G. Zloshchastiev","doi":"10.1109/MSMW.2016.7538192","DOIUrl":null,"url":null,"abstract":"Using the formal analogy between a certain class of Maxwell equations and the Schrdinger equation, we derive the effective Hamiltonian operator that governs the propagation of electromagnetic (EM) wave modes inside nonconducting linear media, which include a large range of nanophotonic and plasmonic waveguides. It turns out that this Hamiltonian is essentially non-Hermitian, and thus requires a special treatment. We formulate the density operator approach for dynamical systems with non-Hermitian Hamiltonians, and derive a master equation that describes the statistical ensembles of EM wave modes. The method provides a theoretical instrument which can be used when designing the next generation of quantum EM devices for sensitive and non-invasive measurements.","PeriodicalId":6504,"journal":{"name":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2016.7538192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Using the formal analogy between a certain class of Maxwell equations and the Schrdinger equation, we derive the effective Hamiltonian operator that governs the propagation of electromagnetic (EM) wave modes inside nonconducting linear media, which include a large range of nanophotonic and plasmonic waveguides. It turns out that this Hamiltonian is essentially non-Hermitian, and thus requires a special treatment. We formulate the density operator approach for dynamical systems with non-Hermitian Hamiltonians, and derive a master equation that describes the statistical ensembles of EM wave modes. The method provides a theoretical instrument which can be used when designing the next generation of quantum EM devices for sensitive and non-invasive measurements.
电磁波在介质中的传播和耗散的非厄米哈密顿方法
利用一类麦克斯韦方程和薛定谔方程之间的形式类比,我们导出了控制电磁波模式在非导电线性介质中传播的有效哈密顿算符,其中包括大范围的纳米光子和等离子体波导。这个哈密顿函数本质上是非厄米函数,因此需要特殊处理。我们建立了具有非厄米哈密顿量的动力系统的密度算子方法,并推导了描述电磁波模态统计系综的主方程。该方法为设计下一代量子电磁器件提供了一种理论工具,可用于敏感和非侵入性测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信