Detection of Hand Poses with a Single-Channel Optical Fiber Force Myography Sensor: A Proof-of-Concept Study

M. K. Gomes, Willian H. A. da Silva, Antonio Ribas Neto, Julio Fajardo, E. Rohmer, E. Fujiwara
{"title":"Detection of Hand Poses with a Single-Channel Optical Fiber Force Myography Sensor: A Proof-of-Concept Study","authors":"M. K. Gomes, Willian H. A. da Silva, Antonio Ribas Neto, Julio Fajardo, E. Rohmer, E. Fujiwara","doi":"10.3390/automation3040031","DOIUrl":null,"url":null,"abstract":"Force myography (FMG) detects hand gestures based on muscular contractions, featuring as an alternative to surface electromyography. However, typical FMG systems rely on spatially-distributed arrays of force-sensing resistors to resolve ambiguities. The aim of this proof-of-concept study is to develop a method for identifying hand poses from the static and dynamic components of FMG waveforms based on a compact, single-channel optical fiber sensor. As the user performs a gesture, a micro-bending transducer positioned on the belly of the forearm muscles registers the dynamic optical signals resulting from the exerted forces. A Raspberry Pi 3 minicomputer performs data acquisition and processing. Then, convolutional neural networks correlate the FMG waveforms with the target postures, yielding a classification accuracy of (93.98 ± 1.54)% for eight postures, based on the interrogation of a single fiber transducer.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/automation3040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Force myography (FMG) detects hand gestures based on muscular contractions, featuring as an alternative to surface electromyography. However, typical FMG systems rely on spatially-distributed arrays of force-sensing resistors to resolve ambiguities. The aim of this proof-of-concept study is to develop a method for identifying hand poses from the static and dynamic components of FMG waveforms based on a compact, single-channel optical fiber sensor. As the user performs a gesture, a micro-bending transducer positioned on the belly of the forearm muscles registers the dynamic optical signals resulting from the exerted forces. A Raspberry Pi 3 minicomputer performs data acquisition and processing. Then, convolutional neural networks correlate the FMG waveforms with the target postures, yielding a classification accuracy of (93.98 ± 1.54)% for eight postures, based on the interrogation of a single fiber transducer.
用单通道光纤力肌图传感器检测手部姿势:概念验证研究
力肌图(FMG)检测基于肌肉收缩的手势,以替代表面肌电图为特色。然而,典型的FMG系统依赖于空间分布的力传感电阻阵列来解决歧义。这项概念验证研究的目的是开发一种基于紧凑的单通道光纤传感器,从FMG波形的静态和动态分量中识别手部姿势的方法。当使用者执行一个手势时,位于前臂肌肉腹部的微弯曲传感器记录由施加的力产生的动态光学信号。树莓派3微型计算机执行数据采集和处理。然后,卷积神经网络将FMG波形与目标姿势相关联,基于单个光纤传感器的查询,对8个姿势的分类准确率为(93.98±1.54)%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信