Semantics-aware malware detection

Mihai Christodorescu, S. Jha, S. Seshia, D. Song, R. Bryant
{"title":"Semantics-aware malware detection","authors":"Mihai Christodorescu, S. Jha, S. Seshia, D. Song, R. Bryant","doi":"10.1109/SP.2005.20","DOIUrl":null,"url":null,"abstract":"A malware detector is a system that attempts to determine whether a program has malicious intent. In order to evade detection, malware writers (hackers) frequently use obfuscation to morph malware. Malware detectors that use a pattern-matching approach (such as commercial virus scanners) are susceptible to obfuscations used by hackers. The fundamental deficiency in the pattern-matching approach to malware detection is that it is purely syntactic and ignores the semantics of instructions. In this paper, we present a malware-detection algorithm that addresses this deficiency by incorporating instruction semantics to detect malicious program traits. Experimental evaluation demonstrates that our malware-detection algorithm can detect variants of malware with a relatively low run-time overhead. Moreover our semantics-aware malware detection algorithm is resilient to common obfuscations used by hackers.","PeriodicalId":6366,"journal":{"name":"2005 IEEE Symposium on Security and Privacy (S&P'05)","volume":"48 8 1","pages":"32-46"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"791","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Security and Privacy (S&P'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2005.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 791

Abstract

A malware detector is a system that attempts to determine whether a program has malicious intent. In order to evade detection, malware writers (hackers) frequently use obfuscation to morph malware. Malware detectors that use a pattern-matching approach (such as commercial virus scanners) are susceptible to obfuscations used by hackers. The fundamental deficiency in the pattern-matching approach to malware detection is that it is purely syntactic and ignores the semantics of instructions. In this paper, we present a malware-detection algorithm that addresses this deficiency by incorporating instruction semantics to detect malicious program traits. Experimental evaluation demonstrates that our malware-detection algorithm can detect variants of malware with a relatively low run-time overhead. Moreover our semantics-aware malware detection algorithm is resilient to common obfuscations used by hackers.
语义感知恶意软件检测
恶意软件检测器是一种试图确定程序是否具有恶意意图的系统。为了逃避检测,恶意软件编写者(黑客)经常使用混淆来变形恶意软件。使用模式匹配方法的恶意软件检测器(如商业病毒扫描器)容易受到黑客使用的混淆。恶意软件检测的模式匹配方法的根本缺陷是它是纯语法的,而忽略了指令的语义。在本文中,我们提出了一种恶意软件检测算法,通过结合指令语义来检测恶意程序特征,从而解决了这一缺陷。实验评估表明,我们的恶意软件检测算法能够以相对较低的运行时开销检测出恶意软件的变体。此外,我们的语义感知恶意软件检测算法对黑客使用的常见混淆具有弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信