Dann Mitchell, Laurence Hawker, James Savage, Rory Bingham, Natalie S. Lord, Md Jamal Uddin Khan, Paul Bates, Fabien Durand, Ahmadul Hassan, Saleemul Huq, Akm Saiful Islam, Yann Krien, Jeffrey Neal, Chris Sampson, Andy Smith, Laurent Testut
{"title":"Increased population exposure to Amphan-scale cyclones under future climates","authors":"Dann Mitchell, Laurence Hawker, James Savage, Rory Bingham, Natalie S. Lord, Md Jamal Uddin Khan, Paul Bates, Fabien Durand, Ahmadul Hassan, Saleemul Huq, Akm Saiful Islam, Yann Krien, Jeffrey Neal, Chris Sampson, Andy Smith, Laurent Testut","doi":"10.1002/cli2.36","DOIUrl":null,"url":null,"abstract":"<p>Southern Asia experiences some of the most damaging climate events in the world, with loss of life from some cyclones in the hundreds of thousands. Despite this, research on climate extremes in the region is substantially lacking compared to other parts of the world. To understand the narrative of how an extreme event in the region may change in the future, we consider Super Cyclone Amphan, which made landfall in May 2020, bringing storm surges of 2–4 m to coastlines of India and Bangladesh. Using the latest CMIP6 climate model projections, coupled with storm surge, hydrological, and socio-economic models, we consider how the population exposure to a storm surge of Amphan's scale changes in the future. We vary future sea level rise and population changes consistent with projections out to 2100, but keep other factors constant. Both India and Bangladesh will be negatively impacted, with India showing >200% increased exposure to extreme storm surge flooding (>3 m) under a high emissions scenario and Bangladesh showing an increase in exposure of >80% for low-level flooding (>0.1 m). It is only when we follow a low-emission scenario, consistent with the 2°C Paris Agreement Goal, that we see no real change in Bangladesh's storm surge exposure, mainly due to the population and climate signals cancelling each other out. For India, even with this low-emission scenario, increases in flood exposure are still substantial (>50%). While here we attribute only the storm surge flooding component of the event to climate change, we highlight that tropical cyclones are multifaceted, and damages are often an integration of physical and social components. We recommend that future climate risk assessments explicitly account for potential compounding factors.</p>","PeriodicalId":100261,"journal":{"name":"Climate Resilience and Sustainability","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/cli2.36","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Resilience and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cli2.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Southern Asia experiences some of the most damaging climate events in the world, with loss of life from some cyclones in the hundreds of thousands. Despite this, research on climate extremes in the region is substantially lacking compared to other parts of the world. To understand the narrative of how an extreme event in the region may change in the future, we consider Super Cyclone Amphan, which made landfall in May 2020, bringing storm surges of 2–4 m to coastlines of India and Bangladesh. Using the latest CMIP6 climate model projections, coupled with storm surge, hydrological, and socio-economic models, we consider how the population exposure to a storm surge of Amphan's scale changes in the future. We vary future sea level rise and population changes consistent with projections out to 2100, but keep other factors constant. Both India and Bangladesh will be negatively impacted, with India showing >200% increased exposure to extreme storm surge flooding (>3 m) under a high emissions scenario and Bangladesh showing an increase in exposure of >80% for low-level flooding (>0.1 m). It is only when we follow a low-emission scenario, consistent with the 2°C Paris Agreement Goal, that we see no real change in Bangladesh's storm surge exposure, mainly due to the population and climate signals cancelling each other out. For India, even with this low-emission scenario, increases in flood exposure are still substantial (>50%). While here we attribute only the storm surge flooding component of the event to climate change, we highlight that tropical cyclones are multifaceted, and damages are often an integration of physical and social components. We recommend that future climate risk assessments explicitly account for potential compounding factors.