Density of Balanced 3-Partite Graphs without 3-Cycles or 4-Cycles

IF 0.7 4区 数学 Q2 MATHEMATICS
Zequn Lv, Mei Lu, Chunqiu Fang
{"title":"Density of Balanced 3-Partite Graphs without 3-Cycles or 4-Cycles","authors":"Zequn Lv, Mei Lu, Chunqiu Fang","doi":"10.37236/10958","DOIUrl":null,"url":null,"abstract":"Let $C_k$ be a cycle of order $k$, where $k\\ge 3$. Let ex$(n, n, n, \\{C_{3}, C_{4}\\})$ be the maximum number of edges in a balanced $3$-partite graph whose vertex set consists of three parts, each has $n$ vertices that has no subgraph isomorphic to $C_3$ or $C_4$. We construct dense balanced 3-partite graphs without 3-cycles or 4-cycles and show that ex$(n, n, n, \\{C_{3}, C_{4}\\})\\ge (\\frac{6\\sqrt{2}-8}{(\\sqrt{2}-1)^{3/2}}+o(1))n^{3/2}$.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/10958","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $C_k$ be a cycle of order $k$, where $k\ge 3$. Let ex$(n, n, n, \{C_{3}, C_{4}\})$ be the maximum number of edges in a balanced $3$-partite graph whose vertex set consists of three parts, each has $n$ vertices that has no subgraph isomorphic to $C_3$ or $C_4$. We construct dense balanced 3-partite graphs without 3-cycles or 4-cycles and show that ex$(n, n, n, \{C_{3}, C_{4}\})\ge (\frac{6\sqrt{2}-8}{(\sqrt{2}-1)^{3/2}}+o(1))n^{3/2}$.
无3环或4环的平衡3部图的密度
设$C_k$为顺序的一个循环$k$,其中$k\ge 3$。设ex $(n, n, n, \{C_{3}, C_{4}\})$为平衡的$3$部图的最大边数,该图的顶点集由三个部分组成,每个部分都有$n$个顶点,并且没有同$C_3$或$C_4$同构的子图。我们构造了没有3环和4环的稠密平衡3部图,并证明了ex $(n, n, n, \{C_{3}, C_{4}\})\ge (\frac{6\sqrt{2}-8}{(\sqrt{2}-1)^{3/2}}+o(1))n^{3/2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信