{"title":"An X-Band Oscillator Utilizing Overtone Lithium Niobate MEMS Resonator and 65-nm CMOS","authors":"Ali Kourani, Yansong Yang, S. Gong","doi":"10.1109/IFCS-ISAF41089.2020.9234845","DOIUrl":null,"url":null,"abstract":"This paper presents an 8.6 GHz oscillator utilizing a third antisymmetric overtone ($A_{3}$) in a lithium niobate (LiNbO3) resonator for 5G communications. The oscillator consists of an acoustic resonator in a closed loop with cascaded RF tuned amplifiers (TAs) built on TSMC RF GP 65 nm CMOS. The TAs bandpass response, set by on-chip inductors, satisfies the Bark-hausen's oscillation conditions for $A_{3}$ while suppressing the fundamental and higher-order resonances. The oscillator achieves a measured phase noise of −56 and −113 dBc/Hz at 1 kHz and 100 kHz offsets from an 8.6 GHz output while consuming 10.2 mW of dc power. The oscillator also attains a figure-of-merit of 201.6 dB at 100 kHz offset, surpassing the state-of-the-art (SoA) EM and RF-MEMS oscillators.","PeriodicalId":6872,"journal":{"name":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCS-ISAF41089.2020.9234845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an 8.6 GHz oscillator utilizing a third antisymmetric overtone ($A_{3}$) in a lithium niobate (LiNbO3) resonator for 5G communications. The oscillator consists of an acoustic resonator in a closed loop with cascaded RF tuned amplifiers (TAs) built on TSMC RF GP 65 nm CMOS. The TAs bandpass response, set by on-chip inductors, satisfies the Bark-hausen's oscillation conditions for $A_{3}$ while suppressing the fundamental and higher-order resonances. The oscillator achieves a measured phase noise of −56 and −113 dBc/Hz at 1 kHz and 100 kHz offsets from an 8.6 GHz output while consuming 10.2 mW of dc power. The oscillator also attains a figure-of-merit of 201.6 dB at 100 kHz offset, surpassing the state-of-the-art (SoA) EM and RF-MEMS oscillators.