Prime decomposition of modular tensor categories of local modules of type D

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2018-10-22 DOI:10.4171/QT/140
Andrew Schopieray
{"title":"Prime decomposition of modular tensor categories of local modules of type D","authors":"Andrew Schopieray","doi":"10.4171/QT/140","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{C}(\\mathfrak{g},k)$ be the unitary modular tensor categories arising from the representation theory of quantum groups at roots of unity for arbitrary simple finite-dimensional complex Lie algebra $\\mathfrak{g}$ and positive integer levels $k$. Here we classify nondegenerate fusion subcategories of the modular tensor categories of local modules $\\mathcal{C}(\\mathfrak{g},k)_R^0$ where $R$ is the regular algebra of Tannakian $\\text{Rep}(H)\\subset\\mathcal{C}(\\mathfrak{g},k)_\\text{pt}$. For $\\mathfrak{g}=\\mathfrak{so}_5$ we describe the decomposition of $\\mathcal{C}(\\mathfrak{g},k)_R^0$ into prime factors explicitly and as an application we classify relations in the Witt group of nondegenerately braided fusion categories generated by the equivalency classes of $\\mathcal{C}(\\mathfrak{so}_5,k)$ and $\\mathcal{C}(\\mathfrak{g}_2,k)$ for $k\\in\\mathbb{Z}_{\\geq1}$.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"40 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/140","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Let $\mathcal{C}(\mathfrak{g},k)$ be the unitary modular tensor categories arising from the representation theory of quantum groups at roots of unity for arbitrary simple finite-dimensional complex Lie algebra $\mathfrak{g}$ and positive integer levels $k$. Here we classify nondegenerate fusion subcategories of the modular tensor categories of local modules $\mathcal{C}(\mathfrak{g},k)_R^0$ where $R$ is the regular algebra of Tannakian $\text{Rep}(H)\subset\mathcal{C}(\mathfrak{g},k)_\text{pt}$. For $\mathfrak{g}=\mathfrak{so}_5$ we describe the decomposition of $\mathcal{C}(\mathfrak{g},k)_R^0$ into prime factors explicitly and as an application we classify relations in the Witt group of nondegenerately braided fusion categories generated by the equivalency classes of $\mathcal{C}(\mathfrak{so}_5,k)$ and $\mathcal{C}(\mathfrak{g}_2,k)$ for $k\in\mathbb{Z}_{\geq1}$.
D型局部模模张量范畴的素数分解
设$\mathcal{C}(\mathfrak{g},k)$为由任意简单有限维复李代数$\mathfrak{g}$和正整数级$k$的单位根量子群表示理论产生的酉模张量范畴。本文对局部模的模张量范畴$\mathcal{C}(\mathfrak{g},k)_R^0$的非简并融合子范畴进行了分类,其中$R$是tanakian的正则代数$\text{Rep}(H)\subset\mathcal{C}(\mathfrak{g},k)_\text{pt}$。对于$\mathfrak{g}=\mathfrak{so}_5$,我们明确地描述了将$\mathcal{C}(\mathfrak{g},k)_R^0$分解为素因子,并且作为一种应用,我们对$k\in\mathbb{Z}_{\geq1}$的$\mathcal{C}(\mathfrak{so}_5,k)$和$\mathcal{C}(\mathfrak{g}_2,k)$的等效类生成的非退化编织融合类别的Witt群中的关系进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信