Samara M. Ahmed, Adil E. Rajput, A. Sarirete, Tauseef J. Chowdhry
{"title":"Flesch-Kincaid Measure as Proxy of Socio-Economic Status on Twitter: Comparing US Senator Writing to Internet Users","authors":"Samara M. Ahmed, Adil E. Rajput, A. Sarirete, Tauseef J. Chowdhry","doi":"10.4018/ijswis.297037","DOIUrl":null,"url":null,"abstract":"Social media gives researchers an invaluable opportunity to gain insight into different facets of human life. Researchers put a great emphasis on categorizing the socioeconomic status (SES) of individuals to help predict various findings of interest. Forum uses, hashtags and chatrooms are common tools of conversations grouping. Crowdsourcing involves gathering intelligence to group online user community based on common interest. This paper provides a mechanism to look at writings on social media and group them based on their academic background. We analyzed online forum posts from various geographical regions in the US and characterized the readability scores of users. Specifically, we collected 10,000 tweets from the members of US Senate and computed the Flesch-Kincaid readability score. Comparing the Senators’ tweets to the ones from average internet users, we note 1) US Senators’ readability based on their tweets rate is much higher, and 2) immense difference among average citizen’s score compared to those of US Senators is attributed to the wide spectrum of academic attainment.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"28 1","pages":"1-19"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.297037","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Social media gives researchers an invaluable opportunity to gain insight into different facets of human life. Researchers put a great emphasis on categorizing the socioeconomic status (SES) of individuals to help predict various findings of interest. Forum uses, hashtags and chatrooms are common tools of conversations grouping. Crowdsourcing involves gathering intelligence to group online user community based on common interest. This paper provides a mechanism to look at writings on social media and group them based on their academic background. We analyzed online forum posts from various geographical regions in the US and characterized the readability scores of users. Specifically, we collected 10,000 tweets from the members of US Senate and computed the Flesch-Kincaid readability score. Comparing the Senators’ tweets to the ones from average internet users, we note 1) US Senators’ readability based on their tweets rate is much higher, and 2) immense difference among average citizen’s score compared to those of US Senators is attributed to the wide spectrum of academic attainment.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.