High-power free-running single-longitudinal-mode diamond Raman laser enabled by suppressing parasitic stimulated Brillouin scattering

IF 5.2 1区 物理与天体物理 Q1 OPTICS
Yuxuan Liu, Chengjie Zhu, Yuxiang Sun, R. Mildren, Zhen-xu Bai, Baitao Zhang, Weibiao Chen, Dijun Chen, Muye Li, Xuezong Yang, Yan Feng
{"title":"High-power free-running single-longitudinal-mode diamond Raman laser enabled by suppressing parasitic stimulated Brillouin scattering","authors":"Yuxuan Liu, Chengjie Zhu, Yuxiang Sun, R. Mildren, Zhen-xu Bai, Baitao Zhang, Weibiao Chen, Dijun Chen, Muye Li, Xuezong Yang, Yan Feng","doi":"10.1017/hpl.2023.67","DOIUrl":null,"url":null,"abstract":"Abstract A continuous-wave (CW) single-longitudinal-mode (SLM) Raman laser at 1240 nm with power of up to 20.6 W was demonstrated in a free-running diamond Raman oscillator without any axial-mode selection elements. The SLM operation was achieved due to the spatial-hole-burning free nature of Raman gain and was maintained at the highest available pump power by suppressing the parasitic stimulated Brillouin scattering (SBS). A folded-cavity design was employed for reducing the perturbing effect of resonances at the pump frequency. At a pump power of 69 W, the maximum Stokes output reached 20.6 W, corresponding to a 30% optical-to-optical conversion efficiency from 1064 to 1240 nm. The result shows that parasitic SBS is the main physical process disturbing the SLM operation of Raman oscillator at higher power. In addition, for the first time, the spectral linewidth of a CW SLM diamond Raman laser was resolved using the long-delayed self-heterodyne interferometric method, which is 105 kHz at 20 W.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"101 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2023.67","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A continuous-wave (CW) single-longitudinal-mode (SLM) Raman laser at 1240 nm with power of up to 20.6 W was demonstrated in a free-running diamond Raman oscillator without any axial-mode selection elements. The SLM operation was achieved due to the spatial-hole-burning free nature of Raman gain and was maintained at the highest available pump power by suppressing the parasitic stimulated Brillouin scattering (SBS). A folded-cavity design was employed for reducing the perturbing effect of resonances at the pump frequency. At a pump power of 69 W, the maximum Stokes output reached 20.6 W, corresponding to a 30% optical-to-optical conversion efficiency from 1064 to 1240 nm. The result shows that parasitic SBS is the main physical process disturbing the SLM operation of Raman oscillator at higher power. In addition, for the first time, the spectral linewidth of a CW SLM diamond Raman laser was resolved using the long-delayed self-heterodyne interferometric method, which is 105 kHz at 20 W.
抑制寄生受激布里渊散射的高功率自由运行单纵模金刚石拉曼激光器
在无轴向模选择元件的自由运行菱形拉曼振荡器中,展示了1240 nm的连续单纵模拉曼激光器,输出功率高达20.6 W。通过抑制寄生受激布里渊散射(SBS),实现了无空间孔燃烧的拉曼增益,并保持了最高可用泵浦功率。为了减小泵浦频率处共振的扰动效应,采用了折叠腔设计。当泵浦功率为69 W时,最大Stokes输出达到20.6 W,对应于从1064到1240 nm的光到光转换效率为30%。结果表明,寄生SBS是干扰高功率拉曼振荡器SLM工作的主要物理过程。此外,还首次采用长延迟自外差干涉法解析了连续波SLM金刚石拉曼激光器的谱线宽度,该谱线宽度为105 kHz,功率为20 W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
High Power Laser Science and Engineering
High Power Laser Science and Engineering Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
7.10
自引率
4.20%
发文量
401
审稿时长
21 weeks
期刊介绍: High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering. HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信