{"title":"THE K-THEORY OF THE \n${\\mathit{C}}^{\\star }$\n -ALGEBRAS OF 2-RANK GRAPHS ASSOCIATED TO COMPLETE BIPARTITE GRAPHS","authors":"S. A. Mutter","doi":"10.1017/S1446788721000161","DOIUrl":null,"url":null,"abstract":"Abstract Using a result of Vdovina, we may associate to each complete connected bipartite graph \n$\\kappa $\n a two-dimensional square complex, which we call a tile complex, whose link at each vertex is \n$\\kappa $\n . We regard the tile complex in two different ways, each having a different structure as a \n$2$\n -rank graph. To each \n$2$\n -rank graph is associated a universal \n$C^{\\star }$\n -algebra, for which we compute the K-theory, thus providing a new infinite collection of \n$2$\n -rank graph algebras with explicit K-groups. We determine the homology of the tile complexes and give generalisations of the procedures to complexes and systems consisting of polygons with a higher number of sides.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"19 1","pages":"119 - 144"},"PeriodicalIF":0.5000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788721000161","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Using a result of Vdovina, we may associate to each complete connected bipartite graph
$\kappa $
a two-dimensional square complex, which we call a tile complex, whose link at each vertex is
$\kappa $
. We regard the tile complex in two different ways, each having a different structure as a
$2$
-rank graph. To each
$2$
-rank graph is associated a universal
$C^{\star }$
-algebra, for which we compute the K-theory, thus providing a new infinite collection of
$2$
-rank graph algebras with explicit K-groups. We determine the homology of the tile complexes and give generalisations of the procedures to complexes and systems consisting of polygons with a higher number of sides.
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society