THE K-THEORY OF THE ${\mathit{C}}^{\star }$ -ALGEBRAS OF 2-RANK GRAPHS ASSOCIATED TO COMPLETE BIPARTITE GRAPHS

IF 0.5 4区 数学 Q3 MATHEMATICS
S. A. Mutter
{"title":"THE K-THEORY OF THE \n${\\mathit{C}}^{\\star }$\n -ALGEBRAS OF 2-RANK GRAPHS ASSOCIATED TO COMPLETE BIPARTITE GRAPHS","authors":"S. A. Mutter","doi":"10.1017/S1446788721000161","DOIUrl":null,"url":null,"abstract":"Abstract Using a result of Vdovina, we may associate to each complete connected bipartite graph \n$\\kappa $\n a two-dimensional square complex, which we call a tile complex, whose link at each vertex is \n$\\kappa $\n . We regard the tile complex in two different ways, each having a different structure as a \n$2$\n -rank graph. To each \n$2$\n -rank graph is associated a universal \n$C^{\\star }$\n -algebra, for which we compute the K-theory, thus providing a new infinite collection of \n$2$\n -rank graph algebras with explicit K-groups. We determine the homology of the tile complexes and give generalisations of the procedures to complexes and systems consisting of polygons with a higher number of sides.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"19 1","pages":"119 - 144"},"PeriodicalIF":0.5000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788721000161","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Using a result of Vdovina, we may associate to each complete connected bipartite graph $\kappa $ a two-dimensional square complex, which we call a tile complex, whose link at each vertex is $\kappa $ . We regard the tile complex in two different ways, each having a different structure as a $2$ -rank graph. To each $2$ -rank graph is associated a universal $C^{\star }$ -algebra, for which we compute the K-theory, thus providing a new infinite collection of $2$ -rank graph algebras with explicit K-groups. We determine the homology of the tile complexes and give generalisations of the procedures to complexes and systems consisting of polygons with a higher number of sides.
与完全二部图相关的2-秩图的${\mathit{C}}^{\star}$ -代数的k理论
利用Vdovina的一个结果,我们可以给每一个完全连通二部图$\kappa $关联一个二维方形复合体,我们称之为tile复合体,它在每个顶点处的连杆为$\kappa $。我们以两种不同的方式来看待贴图复合体,每一种都有不同的结构作为$2$ -rank图。对于每一个$2$秩的图,我们都关联了一个泛$C^{\star}$ -代数,为此我们计算了k理论,从而提供了一个新的具有显式k群的$2$秩图代数的无限集合。我们确定了瓷砖复合物的同源性,并给出了由具有较高边数的多边形组成的复合物和系统的程序的概化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信