The involvement of reactive oxygen species in wounding-induced archeospores production in Neopyropia yezoensis

Q1 Agricultural and Biological Sciences
Dahai Gao , Chaofeng Teng , Xinghong Yan
{"title":"The involvement of reactive oxygen species in wounding-induced archeospores production in Neopyropia yezoensis","authors":"Dahai Gao ,&nbsp;Chaofeng Teng ,&nbsp;Xinghong Yan","doi":"10.1016/j.aaf.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><div>The archeospores released from the blades of <em>Neopyropia yezoensis</em> via dedifferentiated vegetative cells have drawn attention both in cultivation and research. Wounding-induced archeospores formation and release have been observed in <em>N. yezoensis</em>, but the mechanism behind them is unclear. In this study, the involvement of reactive oxygen species (ROS) in the process of wounding-induced archeospores formation and release was investigated. Based on ROS fluorescence observations, the blade fragments began to accumulate ROS after 12 h wounding, while no ROS signals were observed in normal blades. Next, when the blade fragments were treated with ROS inhibitor diphenyleneiodonium (DPI), it showed that the production of archeopores was significantly suppressed. Under normal culturing after wounding, 78.3% of the fragments could release archeospores, and the ROS fluorescence was enriched in the released archeospores. Under 0.05 μM DPI treatment, the percentage of fragments releasing archeospores was dropped to 16.2%, with decreased ROS fluorescence levels. Under 0.1 μM DPI treatment, no archeospores were released from the fragments, and ROS fluorescence was also undetectable in the fragments. Our findings proved that ROS are essential for wounding-induced archeospores production, which might play regulatory roles in the cell dedifferentiation of <em>N. yezoensis</em>.</div></div>","PeriodicalId":36894,"journal":{"name":"Aquaculture and Fisheries","volume":"10 1","pages":"Pages 89-93"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture and Fisheries","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468550X23000850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The archeospores released from the blades of Neopyropia yezoensis via dedifferentiated vegetative cells have drawn attention both in cultivation and research. Wounding-induced archeospores formation and release have been observed in N. yezoensis, but the mechanism behind them is unclear. In this study, the involvement of reactive oxygen species (ROS) in the process of wounding-induced archeospores formation and release was investigated. Based on ROS fluorescence observations, the blade fragments began to accumulate ROS after 12 h wounding, while no ROS signals were observed in normal blades. Next, when the blade fragments were treated with ROS inhibitor diphenyleneiodonium (DPI), it showed that the production of archeopores was significantly suppressed. Under normal culturing after wounding, 78.3% of the fragments could release archeospores, and the ROS fluorescence was enriched in the released archeospores. Under 0.05 μM DPI treatment, the percentage of fragments releasing archeospores was dropped to 16.2%, with decreased ROS fluorescence levels. Under 0.1 μM DPI treatment, no archeospores were released from the fragments, and ROS fluorescence was also undetectable in the fragments. Our findings proved that ROS are essential for wounding-induced archeospores production, which might play regulatory roles in the cell dedifferentiation of N. yezoensis.
活性氧在叶绿异芽孢(Neopyropia yezoensis)损伤诱导的原孢子产生中的作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquaculture and Fisheries
Aquaculture and Fisheries Agricultural and Biological Sciences-Aquatic Science
CiteScore
7.50
自引率
0.00%
发文量
54
审稿时长
48 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信