{"title":"Tailored Synthesis of PS@Ag@TiO2 Core-shell Nanocomposite for Photocatalytic Dye Degradation","authors":"H. Acharya","doi":"10.31031/rdms.2021.15.000866","DOIUrl":null,"url":null,"abstract":"Here, we describe a simple chemical method to synthesize multi component PS@Ag@TiO 2 nanocomposites. The three-step synthetic approach comprises of synthesis of polystyrene (PS) particles, deposition of silver (Ag) nanostructure and coating of titanium dioxide (TiO 2 ) nanoshells. As synthesized materials is characterised by microscopic and spectroscopic techniques. The size of the PS particles is obtained as approx. 200nm in diameter. Ag nanoparticles deposited PS particles are indicated by the surface plasmon band resonance in UV-vis study. To study the potential application, the photocatalytic activity of the PS@Ag@TiO 2 nanocomposites is investigated in Methylene Blue (MB) dye degradation. Nanocomposite provides high photocatalytic degradation with a maximum efficiency of over 90% only in 30min.","PeriodicalId":20943,"journal":{"name":"Research & Development in Material Science","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research & Development in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/rdms.2021.15.000866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Here, we describe a simple chemical method to synthesize multi component PS@Ag@TiO 2 nanocomposites. The three-step synthetic approach comprises of synthesis of polystyrene (PS) particles, deposition of silver (Ag) nanostructure and coating of titanium dioxide (TiO 2 ) nanoshells. As synthesized materials is characterised by microscopic and spectroscopic techniques. The size of the PS particles is obtained as approx. 200nm in diameter. Ag nanoparticles deposited PS particles are indicated by the surface plasmon band resonance in UV-vis study. To study the potential application, the photocatalytic activity of the PS@Ag@TiO 2 nanocomposites is investigated in Methylene Blue (MB) dye degradation. Nanocomposite provides high photocatalytic degradation with a maximum efficiency of over 90% only in 30min.